-
Notifications
You must be signed in to change notification settings - Fork 140
/
pretrain.py
101 lines (76 loc) · 2.99 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
"""Pre-train encoder and classifier for source dataset."""
import torch.nn as nn
import torch.optim as optim
import params
from utils import make_variable, save_model
def train_src(encoder, classifier, data_loader):
"""Train classifier for source domain."""
####################
# 1. setup network #
####################
# set train state for Dropout and BN layers
encoder.train()
classifier.train()
# setup criterion and optimizer
optimizer = optim.Adam(
list(encoder.parameters()) + list(classifier.parameters()),
lr=params.c_learning_rate,
betas=(params.beta1, params.beta2))
criterion = nn.CrossEntropyLoss()
####################
# 2. train network #
####################
for epoch in range(params.num_epochs_pre):
for step, (images, labels) in enumerate(data_loader):
# make images and labels variable
images = make_variable(images)
labels = make_variable(labels.squeeze_())
# zero gradients for optimizer
optimizer.zero_grad()
# compute loss for critic
preds = classifier(encoder(images))
loss = criterion(preds, labels)
# optimize source classifier
loss.backward()
optimizer.step()
# print step info
if ((step + 1) % params.log_step_pre == 0):
print("Epoch [{}/{}] Step [{}/{}]: loss={}"
.format(epoch + 1,
params.num_epochs_pre,
step + 1,
len(data_loader),
loss.data[0]))
# eval model on test set
if ((epoch + 1) % params.eval_step_pre == 0):
eval_src(encoder, classifier, data_loader)
# save model parameters
if ((epoch + 1) % params.save_step_pre == 0):
save_model(encoder, "ADDA-source-encoder-{}.pt".format(epoch + 1))
save_model(
classifier, "ADDA-source-classifier-{}.pt".format(epoch + 1))
# # save final model
save_model(encoder, "ADDA-source-encoder-final.pt")
save_model(classifier, "ADDA-source-classifier-final.pt")
return encoder, classifier
def eval_src(encoder, classifier, data_loader):
"""Evaluate classifier for source domain."""
# set eval state for Dropout and BN layers
encoder.eval()
classifier.eval()
# init loss and accuracy
loss = 0
acc = 0
# set loss function
criterion = nn.CrossEntropyLoss()
# evaluate network
for (images, labels) in data_loader:
images = make_variable(images, volatile=True)
labels = make_variable(labels)
preds = classifier(encoder(images))
loss += criterion(preds, labels).data[0]
pred_cls = preds.data.max(1)[1]
acc += pred_cls.eq(labels.data).cpu().sum()
loss /= len(data_loader)
acc /= len(data_loader.dataset)
print("Avg Loss = {}, Avg Accuracy = {:2%}".format(loss, acc))