forked from pytorch/vision
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
adding unit tests for image transforms
- Loading branch information
Showing
3 changed files
with
209 additions
and
28 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
import torch | ||
import torchvision.transforms as transforms | ||
import torchvision.datasets as datasets | ||
import numpy as np | ||
import unittest | ||
import random | ||
|
||
class Tester(unittest.TestCase): | ||
def test_crop(self): | ||
height = random.randint(10, 32) * 2 | ||
width = random.randint(10, 32) * 2 | ||
oheight = random.randint(5, (height - 2) / 2) * 2 | ||
owidth = random.randint(5, (width - 2) / 2) * 2 | ||
|
||
img = torch.ones(3, height, width) | ||
oh1 = (height - oheight) / 2 | ||
ow1 = (width - owidth) / 2 | ||
imgnarrow = img[:, oh1 :oh1 + oheight, ow1 :ow1 + owidth] | ||
imgnarrow.fill_(0) | ||
result = transforms.Compose([ | ||
transforms.ToPILImage(), | ||
transforms.CenterCrop((oheight, owidth)), | ||
transforms.ToTensor(), | ||
])(img) | ||
assert result.sum() == 0, "height: " + str(height) + " width: " \ | ||
+ str( width) + " oheight: " + str(oheight) + " owidth: " + str(owidth) | ||
oheight += 1 | ||
owidth += 1 | ||
result = transforms.Compose([ | ||
transforms.ToPILImage(), | ||
transforms.CenterCrop((oheight, owidth)), | ||
transforms.ToTensor(), | ||
])(img) | ||
sum1 = result.sum() | ||
assert sum1 > 1, "height: " + str(height) + " width: " \ | ||
+ str( width) + " oheight: " + str(oheight) + " owidth: " + str(owidth) | ||
oheight += 1 | ||
owidth += 1 | ||
result = transforms.Compose([ | ||
transforms.ToPILImage(), | ||
transforms.CenterCrop((oheight, owidth)), | ||
transforms.ToTensor(), | ||
])(img) | ||
sum2 = result.sum() | ||
assert sum2 > 0, "height: " + str(height) + " width: " \ | ||
+ str( width) + " oheight: " + str(oheight) + " owidth: " + str(owidth) | ||
assert sum2 > sum1, "height: " + str(height) + " width: " \ | ||
+ str( width) + " oheight: " + str(oheight) + " owidth: " + str(owidth) | ||
|
||
def test_scale(self): | ||
height = random.randint(24, 32) * 2 | ||
width = random.randint(24, 32) * 2 | ||
osize = random.randint(5, 12) * 2 | ||
|
||
img = torch.ones(3, height, width) | ||
result = transforms.Compose([ | ||
transforms.ToPILImage(), | ||
transforms.Scale(osize), | ||
transforms.ToTensor(), | ||
])(img) | ||
# print img.size() | ||
# print 'output size:', osize | ||
# print result.size() | ||
assert osize in result.size() | ||
if height < width: | ||
assert result.size(1) <= result.size(2) | ||
elif width < height: | ||
assert result.size(1) >= result.size(2) | ||
|
||
def test_random_crop(self): | ||
height = random.randint(10, 32) * 2 | ||
width = random.randint(10, 32) * 2 | ||
oheight = random.randint(5, (height - 2) / 2) * 2 | ||
owidth = random.randint(5, (width - 2) / 2) * 2 | ||
img = torch.ones(3, height, width) | ||
result = transforms.Compose([ | ||
transforms.ToPILImage(), | ||
transforms.RandomCrop((oheight, owidth)), | ||
transforms.ToTensor(), | ||
])(img) | ||
assert result.size(1) == oheight | ||
assert result.size(2) == owidth | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters