-
Notifications
You must be signed in to change notification settings - Fork 18
/
evaluate_qa.py
73 lines (52 loc) · 2.11 KB
/
evaluate_qa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2020 Apple Inc. All Rights Reserved.
#
"""
Functions for computing QA evaluation metrics.
We adapt the functions from the official SQuAD (Rajpurkar et al. '18) evaluation script:
https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/
"""
import collections
import re
import string
from typing import List
def normalize_answer(s: str) -> str:
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
regex = re.compile(r'\b(a|an|the)\b', re.UNICODE)
return re.sub(regex, ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def get_tokens(s: str) -> List[str]:
"""Normalize string and split string into tokens."""
if not s:
return []
return normalize_answer(s).split()
def compute_exact(a_gold: str, a_pred: str) -> int:
"""Compute the Exact Match score."""
return int(normalize_answer(a_gold) == normalize_answer(a_pred))
def compute_f1_from_tokens(gold_toks: List[str], pred_toks: List[str]) -> float:
"""Compute the F1 score from tokenized gold answer and prediction."""
common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
num_same = sum(common.values())
if len(gold_toks) == 0 or len(pred_toks) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks)
if num_same == 0:
return 0
precision = 1.0 * num_same / len(pred_toks)
recall = 1.0 * num_same / len(gold_toks)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def compute_f1(a_gold: str, a_pred: str) -> float:
"""Compute the F1 score."""
gold_toks = get_tokens(a_gold)
pred_toks = get_tokens(a_pred)
return compute_f1_from_tokens(gold_toks, pred_toks)