Skip to content
/ ml-fct Public

Research publication code for "Forward Compatible Training for Large-Scale Embedding Retrieval Systems", CVPR 2022, and "FastFill: Efficient Compatible Model Update", ICLR 2023

License

Notifications You must be signed in to change notification settings

apple/ml-fct

Repository files navigation

Compatibility for Machine Learning Model Update

This repository contains PyTorch implementation of Forward Compatible Training for Large-Scale Embedding Retrieval Systems (CVPR 2022):

and FastFill: Efficient Compatible Model Update (ICLR 2023):

The code is written to use Python 3.8 or above.

Requirements

We suggest you first create a virtual environment and install dependencies in the virtual environment.

# Go to repo
cd <path/to/ml-fct>
# Create virtual environment ...
python -m venv .venv
# ... and activate it
source .venv/bin/activate
# Upgrade to the latest versions of pip and wheel
pip install -U pip wheel
pip install -r requirements.txt

CIFAR-100 Experiments (quick start)

We provide CIFAR-100 experiments, for fast exploration. The code will run and produce results of both FCT and Fastfill. Here are the sequence of commands for CIFAR-100 experiments (similar to ImageNet but faster cycles):

# Get data: following command put data in data_store/cifar-100-python
python prepare_dataset.py

# Train old embedding model:
# Note: config files assume training with 8 GPUs. Modify them according to your environment.
python train_backbone.py --config configs/cifar100_backbone_old.yaml

# Evaluate the old model (single GPU is OK):
python eval.py --config configs/cifar100_eval_old_old.yaml

# Train New embedding model:
python train_backbone.py --config configs/cifar100_backbone_new.yaml

# Evaluate the new model (single GPU is OK):
python eval.py --config configs/cifar100_eval_new_new.yaml

# Download pre-traianed models if training with side-information:
source get_pretrained_models.sh

# Train FCT transformation:
# If training with side-info model, add its path to the config file below. You
# can use the same side-info model as for ImageNet experiment here. 
python train_transformation.py --config configs/cifar100_fct_transformation.yaml

# Evaluate transformed model vs new model (single GPU is OK):
python eval.py --config configs/cifar100_eval_old_new_fct.yaml

# Train FastFill transformation:
python train_transformation.py --config configs/cifar100_fastfill_transformation.yaml

# Evaluate transformed model vs new model (single GPU is OK):
python eval.py --config configs/cifar100_eval_old_new_fastfill.yaml

CIFAR-100 (FCT, without backfilling):

  • These results are not averaged over multiple runs.
Case Side-Info CMC Top-1 (%) CMC Top-5 (%) mAP (%)
old/old N/A 34.2 60.6 16.5
new/new N/A 56.5 77.0 36.3
FCT new/old No 47.2 72.6 25.8
FCT new/old Yes 50.2 73.7 32.2

CIFAR-100 (FastFill, with backfilling):

  • These results are not averaged over multiple runs.
  • AUC: Area Under the backfilling Curve. For old/old and new/new we report performance corresponding to no model update and full model update, respectively.
Case Side-Info Backfilling AUC CMC Top-1 (%) AUC CMC Top-5 (%) AUC mAP (%)
old/old N/A N/A 34.2 60.6 16.5
new/new N/A N/A 56.5 77.0 36.3
FCT new/old No Random 49.1 73.6 29.1
FastFill new/old No Uncertainty 53.6 75.3 32.5

ImageNet-1k Experiments

Here are the sequence of commands for ImageNet experiments:

# Get data: Prepare full ImageNet-1k dataset and provide its path in all config
# files. The path should include training and validation directories. 

# Train old embedding model:
# Note: config files assume training with 8 GPUs. Modify them according to your environment.
python train_backbone.py --config configs/imagenet_backbone_old.yaml

# Evaluate the old model:
python eval.py --config configs/imagenet_eval_old_old.yaml

# Train New embedding model:
python train_backbone.py --config configs/imagenet_backbone_new.yaml

# Evaluate the new model:
python eval.py --config configs/imagenet_eval_new_new.yaml

# Download pre-traianed models if training with side-information:
source get_pretrained_models.sh

# Train FCT transformation:
# (If training with side-info model, add its path to the config file below.)
python train_transformation.py --config configs/imagenet_fct_transformation.yaml

# Evaluate transformed model vs new model:
python eval.py --config configs/imagenet_eval_old_new_fct.yaml

# Train FastFill transformation:
python train_transformation.py --config configs/imagenet_fastfill_transformation.yaml

# Evaluate transformed model vs new model:
python eval.py --config configs/imagenet_eval_old_new_fastfill.yaml

ImageNet-1k (FCT, without backfilling):

Case Side-Info CMC Top-1 (%) CMC Top-5 (%) mAP (%)
old/old N/A 46.4 65.1 28.3
new/new N/A 68.4 84.7 45.6
FCT new/old No 61.8 80.5 39.9
FCT new/old Yes 65.1 82.7 44.0

ImageNet-1k (FastFill, with backfilling):

  • AUC: Area Under the backfilling Curve. For old/old and new/new we report performance corresponding to no model update and full model update, respectively.
Case Side-Info Backfilling AUC CMC Top-1 (%) AUC CMC Top-5 (%) AUC mAP (%)
old/old N/A N/A 46.6 65.2 28.5
new/new N/A N/A 68.2 84.6 45.3
FCT new/old No Random 62.8 81.1 40.5
FastFill new/old No Uncertainty 66.5 83.6 44.8
FCT new/old Yes Random 64.7 82.4 42.6
FastFill new/old Yes Uncertainty 67.8 84.2 46.2

Contact

Citation

@article{ramanujan2022forward,
  title={Forward Compatible Training for Large-Scale Embedding Retrieval Systems},
  author={Ramanujan, Vivek and Vasu, Pavan Kumar Anasosalu and Farhadi, Ali and Tuzel, Oncel and Pouransari, Hadi},
  journal={Proceedings of the IEEE conference on computer vision and pattern recognition},
  year={2022}
}

@inproceedings{jaeckle2023fastfill,
  title={FastFill: Efficient Compatible Model Update},
  author={Jaeckle, Florian and Faghri, Fartash and Farhadi, Ali and Tuzel, Oncel and Pouransari, Hadi},
  booktitle={International Conference on Learning Representations}
  year={2023}
}

About

Research publication code for "Forward Compatible Training for Large-Scale Embedding Retrieval Systems", CVPR 2022, and "FastFill: Efficient Compatible Model Update", ICLR 2023

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published