This repository contains PyTorch implementation of Forward Compatible Training for Large-Scale Embedding Retrieval Systems (CVPR 2022):
and FastFill: Efficient Compatible Model Update (ICLR 2023):
The code is written to use Python 3.8 or above.
We suggest you first create a virtual environment and install dependencies in the virtual environment.
# Go to repo
cd <path/to/ml-fct>
# Create virtual environment ...
python -m venv .venv
# ... and activate it
source .venv/bin/activate
# Upgrade to the latest versions of pip and wheel
pip install -U pip wheel
pip install -r requirements.txt
We provide CIFAR-100 experiments, for fast exploration. The code will run and produce results of both FCT and Fastfill. Here are the sequence of commands for CIFAR-100 experiments (similar to ImageNet but faster cycles):
# Get data: following command put data in data_store/cifar-100-python
python prepare_dataset.py
# Train old embedding model:
# Note: config files assume training with 8 GPUs. Modify them according to your environment.
python train_backbone.py --config configs/cifar100_backbone_old.yaml
# Evaluate the old model (single GPU is OK):
python eval.py --config configs/cifar100_eval_old_old.yaml
# Train New embedding model:
python train_backbone.py --config configs/cifar100_backbone_new.yaml
# Evaluate the new model (single GPU is OK):
python eval.py --config configs/cifar100_eval_new_new.yaml
# Download pre-traianed models if training with side-information:
source get_pretrained_models.sh
# Train FCT transformation:
# If training with side-info model, add its path to the config file below. You
# can use the same side-info model as for ImageNet experiment here.
python train_transformation.py --config configs/cifar100_fct_transformation.yaml
# Evaluate transformed model vs new model (single GPU is OK):
python eval.py --config configs/cifar100_eval_old_new_fct.yaml
# Train FastFill transformation:
python train_transformation.py --config configs/cifar100_fastfill_transformation.yaml
# Evaluate transformed model vs new model (single GPU is OK):
python eval.py --config configs/cifar100_eval_old_new_fastfill.yaml
- These results are not averaged over multiple runs.
Case | Side-Info |
CMC Top-1 (%) |
CMC Top-5 (%) |
mAP (%) |
---|---|---|---|---|
old/old | N/A | 34.2 | 60.6 | 16.5 |
new/new | N/A | 56.5 | 77.0 | 36.3 |
FCT new/old | No | 47.2 | 72.6 | 25.8 |
FCT new/old | Yes | 50.2 | 73.7 | 32.2 |
- These results are not averaged over multiple runs.
- AUC: Area Under the backfilling Curve. For old/old and new/new we report performance corresponding to no model update and full model update, respectively.
Case | Side-Info |
Backfilling |
AUC CMC Top-1 (%) |
AUC CMC Top-5 (%) |
AUC mAP (%) |
---|---|---|---|---|---|
old/old | N/A | N/A | 34.2 | 60.6 | 16.5 |
new/new | N/A | N/A | 56.5 | 77.0 | 36.3 |
FCT new/old | No | Random | 49.1 | 73.6 | 29.1 |
FastFill new/old | No | Uncertainty | 53.6 | 75.3 | 32.5 |
Here are the sequence of commands for ImageNet experiments:
# Get data: Prepare full ImageNet-1k dataset and provide its path in all config
# files. The path should include training and validation directories.
# Train old embedding model:
# Note: config files assume training with 8 GPUs. Modify them according to your environment.
python train_backbone.py --config configs/imagenet_backbone_old.yaml
# Evaluate the old model:
python eval.py --config configs/imagenet_eval_old_old.yaml
# Train New embedding model:
python train_backbone.py --config configs/imagenet_backbone_new.yaml
# Evaluate the new model:
python eval.py --config configs/imagenet_eval_new_new.yaml
# Download pre-traianed models if training with side-information:
source get_pretrained_models.sh
# Train FCT transformation:
# (If training with side-info model, add its path to the config file below.)
python train_transformation.py --config configs/imagenet_fct_transformation.yaml
# Evaluate transformed model vs new model:
python eval.py --config configs/imagenet_eval_old_new_fct.yaml
# Train FastFill transformation:
python train_transformation.py --config configs/imagenet_fastfill_transformation.yaml
# Evaluate transformed model vs new model:
python eval.py --config configs/imagenet_eval_old_new_fastfill.yaml
Case | Side-Info |
CMC Top-1 (%) |
CMC Top-5 (%) |
mAP (%) |
---|---|---|---|---|
old/old | N/A | 46.4 | 65.1 | 28.3 |
new/new | N/A | 68.4 | 84.7 | 45.6 |
FCT new/old | No | 61.8 | 80.5 | 39.9 |
FCT new/old | Yes | 65.1 | 82.7 | 44.0 |
- AUC: Area Under the backfilling Curve. For old/old and new/new we report performance corresponding to no model update and full model update, respectively.
Case | Side-Info |
Backfilling |
AUC CMC Top-1 (%) |
AUC CMC Top-5 (%) |
AUC mAP (%) |
---|---|---|---|---|---|
old/old | N/A | N/A | 46.6 | 65.2 | 28.5 |
new/new | N/A | N/A | 68.2 | 84.6 | 45.3 |
FCT new/old | No | Random | 62.8 | 81.1 | 40.5 |
FastFill new/old | No | Uncertainty | 66.5 | 83.6 | 44.8 |
FCT new/old | Yes | Random | 64.7 | 82.4 | 42.6 |
FastFill new/old | Yes | Uncertainty | 67.8 | 84.2 | 46.2 |
- Hadi Pouransari: mpouransari@apple.com
@article{ramanujan2022forward,
title={Forward Compatible Training for Large-Scale Embedding Retrieval Systems},
author={Ramanujan, Vivek and Vasu, Pavan Kumar Anasosalu and Farhadi, Ali and Tuzel, Oncel and Pouransari, Hadi},
journal={Proceedings of the IEEE conference on computer vision and pattern recognition},
year={2022}
}
@inproceedings{jaeckle2023fastfill,
title={FastFill: Efficient Compatible Model Update},
author={Jaeckle, Florian and Faghri, Fartash and Farhadi, Ali and Tuzel, Oncel and Pouransari, Hadi},
booktitle={International Conference on Learning Representations}
year={2023}
}