-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrammar_utils.py
91 lines (81 loc) · 3.64 KB
/
grammar_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from nltk import Nonterminal
from numpy.random import choice
def preprocess_pcfg(grammar_file):
"""Preprocesses given PCFG grammar file to return a collection of strings representing
all the productions in the grammar. Expected grammar file format: NLTK PCFG format,
for e.g.:
Statement -> Fact
Fact -> Polarity '(' Attribute Entity ')'
Entity -> 'cat' | 'dog' | 'bald eagle' | 'rabbit' | 'mouse'
Attribute -> 'red' | 'blue' | 'green' | 'kind' | 'nice' | 'big'
Polarity -> '+' [0.8] | '-' [0.2]
"""
# Iterate through the lines and collect productions in a dictionary, keyed by
# the nonterminals. So if there are two lines, one with S -> NP VP | VP and another
# with S -> NP VP PP on two different lines, the dictionary will contain a key 'S'
# with value 'NP VP | VP | NP VP PP'.
productions = []
nonterminal_dict = {}
for line in grammar_file.readlines():
production_parts = line.strip().split("->", 1)
if len(production_parts) == 2:
lhs = production_parts[0].strip()
rhs = production_parts[1]
if lhs not in nonterminal_dict:
nonterminal_dict[lhs] = rhs
else:
nonterminal_dict[lhs] += " | " + rhs
# Iterate through the productions and check if each possible RHS has a probability
# associated with it, expected to be specified like [0.5].
productions = []
for nonterminal in nonterminal_dict:
rhs = nonterminal_dict[nonterminal]
rhs_parts = [rhs_part.strip() for rhs_part in rhs.split("|")]
num_parts = len(rhs_parts)
found_probs = True
for rhs_part in rhs_parts:
rhs_part_items = rhs_part.split(" ")
rhs_part_last_item = rhs_part_items[-1]
if not (
rhs_part_last_item.startswith("[") and rhs_part_last_item.endswith("]")
):
found_probs = False
break
# If any of the RHS part items did not have an associated probability, assign all of them equal
# probability.
if not found_probs:
prob = 1.0 / num_parts
rhs_parts_with_probs = []
for rhs_part in rhs_parts:
rhs_part_mod = rhs_part + " " + "[" + str(prob) + "]"
rhs_parts_with_probs.append(rhs_part_mod)
rhs_parts = rhs_parts_with_probs
final_rhs = " | ".join(rhs_parts)
production = f"{nonterminal} -> {final_rhs}"
productions.append(production)
return productions
def choose_production(grammar, nonterminal):
"""Choose a production with specified nonterminal as LHS based on the probability distribution
of the grammar."""
productions = [
item for item in grammar.productions() if item.lhs().symbol() == nonterminal
]
if len(productions) == 0:
raise ValueError(f"Nonterminal {nonterminal} not found in the grammar!")
probabilities = [production.prob() for production in productions]
chosen_production = choice(productions, p=probabilities)
return chosen_production
def generate_random_statement(grammar, nonterminal):
"""Generate a random statement from the given nonterminal LHS in the grammar."""
chosen_production = choose_production(grammar, nonterminal)
rhs = chosen_production.rhs()
sentence = ""
for item in rhs:
if isinstance(item, Nonterminal):
item_generated_statement = generate_random_statement(grammar, item.symbol())
else:
item_generated_statement = item
if len(sentence) > 0:
sentence += " "
sentence += item_generated_statement
return sentence