-
Notifications
You must be signed in to change notification settings - Fork 1
/
Little Schemer.rkt
835 lines (830 loc) · 24 KB
/
Little Schemer.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
#lang scheme
;CHAPTER 1 - TOYS
(define atom?
(lambda (x)
(and (not (pair? x)) (not (null? x)))))
;CHAPTER 2 - DO IT AGAIN AND AGAIN
(define lat?
(lambda (l)
(cond
((null? l) #t)
((atom? (car l)) (lat? (cdr l)))
(else #f))))
(define member?
(lambda (a lat)
(cond
((null? lat) #f)
(else (or (eq? (car lat) a)
(member? a (cdr lat)))))))
;CHAPTER 3 - CONS THE MAGNIFICENT
(define rember ;remove member
(lambda (s l)
(cond
((null? l) (quote ()))
((equal? (car l) s) (cdr l))
(else (cons (car l) (rember s (cdr l)))))))
(define firsts ;make a list of the firsts item in a list
(lambda (l)
(cond
((null? l) (quote ()))
(else (cons (car (car l)) (firsts (cdr l)))))))
(define seconds
(lambda (l)
(cond
((null? l) (quote ()))
(else (cons (second (car l)) (seconds (cdr l)))))))
(define insertR
(lambda (new old lat)
(cond
((null? lat) (quote ()))
(else
(cond
((eq? (car lat) old) (cons old (cons new (cdr lat))))
(else (cons (car lat) (insertR new old (cdr lat)))))))))
(define insertL
(lambda (new old lat)
(cond
((null? lat) (quote ()))
(else
(cond
((eq? (car lat) old) (cons new lat))
(else (cons (car lat) (insertL new old (cdr lat)))))))))
(define subst
(lambda (new old lat)
(cond
((null? lat) (quote ()))
(else
(cond
((eq? (car lat) old) (cons new (cdr lat)))
(else (cons (car lat) (subst new old (cdr lat)))))))))
(define subst2
(lambda (new o1 o2 lat)
(cond
((null? lat) (quote ()))
(else
(cond
((or (eq? (car lat) o1) (eq? (car lat) o2)) (cons new (cdr lat)))
(else (cons (car lat) (subst2 new o1 o2 (cdr lat)))))))))
(define multirember ;remove all of a, such that it is at the first level
(lambda (a lat)
(cond
((null? lat) (quote ()))
(else
(cond
((eq? (car lat) a) (multirember a (cdr lat))) ;continue recursing, even after finding first a
(else (cons (car lat) (multirember a (cdr lat)))))))))
(define multiinsertR
(lambda (new old lat)
(cond
((null? lat) (quote ()))
(else
(cond
((eq? (car lat) old) (cons old (cons new (multiinsertR new old (cdr lat)))))
(else (cons (car lat) (multiinsertR new old (cdr lat)))))))))
(define multiinsertL
(lambda (new old lat)
(cond
((null? lat) (quote ()))
(else
(cond
((eq? (car lat) old) (cons new (cons old (multiinsertL new old (cdr lat)))))
(else (cons (car lat) (multiinsertL new old (cdr lat)))))))))
(define multisubst
(lambda (new old lat)
(cond
((null? lat) (quote ()))
(else
(cond
((eq? (car lat) old) (cons new (multisubst new old (cdr lat))))
(else (cons (car lat) (multisubst new old (cdr lat)))))))))
;CHAPTER 4 - NUMBERS
(define add1
(lambda (n)
(+ n 1)))
(define sub1
(lambda (n)
(- n 1)))
(define o+
(lambda (n m)
(cond
((zero? m) n)
(else (add1 (o+ n (sub1 m)))))))
(define o-
(lambda (n m)
(cond
((zero? m) n)
(else (sub1 (o- n (sub1 m)))))))
(define addtup
(lambda (tup)
(cond
((null? tup) 0)
(else (o+ (car tup) (addtup (cdr tup)))))))
(define *
(lambda (n m)
(cond
((zero? m) 0)
(else (o+ n (* n (sub1 m)))))))
(define tup+
(lambda (tup1 tup2)
(cond
((null? tup1) tup2)
((null? tup2) tup1)
(else
(cons (o+ (car tup1) (car tup2)) (tup+ (cdr tup1) (cdr tup2)))))))
(define >
(lambda (n m)
(cond
((zero? n) #f)
((zero? m) #t)
(else (> (sub1 n) (sub1 m))))))
(define <
(lambda (n m)
(cond
((zero? m) #f)
((zero? n) #t)
(else (< (sub1 n) (sub1 m))))))
(define =
(lambda (n m)
(cond
((> n m) #f)
((< n m) #f)
(else #t))))
(define ^
(lambda (n m)
(cond
((zero? m) 1)
(else (* n (^ n (sub1 m)))))))
(define quotient
(lambda (n m)
(cond
((< n m) 0)
(else (add1 (quotient (o- n m) m))))))
(define length
(lambda (lat)
(cond
((null? lat) 0)
(else (add1 (length (cdr lat)))))))
(define one?
(lambda (n)
(= n 1)))
(define pick
(lambda (n lat)
(cond
((zero? (sub1 n)) (car lat))
(else (pick (sub1 n) (cdr lat))))))
(define rempick
(lambda (n lat)
(cond
((one? n) (cdr lat))
(else (cons (car lat) (rempick (sub1 n) (cdr lat)))))))
(define no-nums
(lambda (lat)
(cond
((null? lat) (quote ()))
(else
(cond
((number? (car lat)) (no-nums (cdr lat)))
(else (cons (car lat) (no-nums (cdr lat)))))))))
(define all-nums
(lambda (lat)
(cond
((null? lat) (quote ()))
(else
(cond
((number? (car lat)) (cons (car lat) (all-nums (cdr lat))))
(else (all-nums (cdr lat))))))))
(define eqan?
(lambda (a1 a2)
(cond
((and (number? a1) (number? a2)) (= a1 a2))
((or (number? a1) (number? a2)) #f)
(else (eq? a1 a2)))))
(define occur
(lambda (a lat)
(cond
((null? lat) 0)
(else
(cond
((eq? (car lat) a) (add1 (occur a (cdr lat))))
(else
(occur a (cdr lat))))))))
;CHAPTER 5 - IT'S FULL OF STARS
(define rember*
(lambda (a l)
(cond
((null? l) (quote()))
((atom? (car l))
(cond
((eq? a (car l)) (rember* a (cdr l)))
(else (cons (car l) (rember* a (cdr l))))))
(else (cons (rember* a (car l)) (rember* a (cdr l)))))))
(define insertR*
(lambda (new old l)
(cond
((null? l) (quote()))
((atom? (car l))
(cond
((eq? old (car l)) (cons old (cons new (insertR* new old (cdr l)))))
(else (cons (car l) (insertR* new old (cdr l))))))
(else (cons (insertR* new old (car l)) (insertR* new old (cdr l)))))))
(define occur*
(lambda (a l)
(cond
((null? l) 0)
((atom? (car l))
(cond
((eq? a (car l)) (add1 (occur* a (cdr l))))
(else (occur* a (cdr l)))))
(else (o+ (occur* a (car l)) (occur* a (cdr l)))))))
(define subst*
(lambda (new old l)
(cond
((null? l) (quote()))
((atom? (car l))
(cond
((eq? (car l) old) (cons new (subst* new old (cdr l))))
(else (cons (car l) (subst* new old (cdr l))))))
(else (cons (subst* new old (car l)) (subst* new old (cdr l)))))))
(define insertL*
(lambda (new old l)
(cond
((null? l) (quote()))
((atom? (car l))
(cond
((eq? (car l) old) (cons new (cons old (insertL* new old (cdr l)))))
(else (cons (car l) (insertL* new old (cdr l))))))
(else (cons (insertL* new old (car l)) (insertL* new old (cdr l)))))))
(define member*
(lambda (a l)
(cond
((null? l) #f)
((atom? (car l))
(cond
((eq? (car l) a) #t)
(else (member* a (cdr l)))))
(else (or (member* a (car l)) (member* a (cdr l)))))))
(define leftmost
(lambda (l)
(cond
((atom? (car l)) (car l))
(else (leftmost (car l))))))
(define eqlist?
(lambda (l1 l2)
(cond
((and (null? l1) (null? l2)) #t)
((or (null? l1) (null? l2)) #f)
(else
(and (equal? (car l1) (car l2)) (eqlist? (cdr l1) (cdr l2)))))))
(define equal?
(lambda (s1 s2)
(cond
((and (atom? s1) (atom? s2))
(eqan? s1 s2))
((or (atom? s1) (atom? s2)) #f)
(else (eqlist? s1 s2)))))
;CHAPTER 6 - SHADOWS
(define numbered?
(lambda (aexp)
(cond
((atom? aexp) (number? aexp))
(else
(and (numbered? (car aexp)) (numbered? (car (cdr (cdr aexp)))))))))
;deprecated (define value
; (lambda (nexp)
; (cond
; ((atom? nexp) nexp)
; ((eq? (operator nexp) (quote +)) (o+ (1st-sub-exp nexp) (2nd-sub-exp nexp)))
; ((eq? (operator nexp) (quote x)) (* (1st-sub-exp nexp) (2nd-sub-exp nexp)))
; (else (^ (1st-sub-exp nexp) (2nd-sub-exp nexp))))))
(define 1st-sub-exp ;to simplify our 'value' function
(lambda (aexp)
(car (cdr aexp))))
(define 2nd-sub-exp
(lambda (aexp)
(car (cdr(cdr aexp)))))
(define operator
(lambda (aexp)
(car aexp)))
(define sero? ;different representation of numbers, where () is 0 and (()()) is 2
(lambda (n)
(null? n)))
(define edd1
(lambda (n)
(cons (quote ()) n)))
(define zub1
(lambda (n)
(cdr n)))
;CHAPTER 7 - FRIENDS AND RELATIONS
;a set is a list in which each atom appears at most once
(define set?
(lambda (lat)
(cond
((null? lat) #t)
((member? (car lat) (cdr lat)) #f)
(else (set? (cdr lat))))))
(define makeset
(lambda (lat)
(cond
((null? lat) (quote ()))
((member? (car lat) (cdr lat)) (makeset (cdr lat)))
(else (cons (car lat) (makeset (cdr lat)))))))
(define makeset2 ;using multirember
(lambda (lat)
(cond
((null? lat) (quote ()))
(else (cons (car lat) (multirember (car lat) (makeset (cdr lat))))))))
(define subset?
(lambda (set1 set2)
(cond
((null? set1) #t)
(else (and (member? (car set1) set2) (subset? (cdr set1) set2))))))
(define eqset?
(lambda (set1 set2)
(and (subset? set1 set2) (subset? set2 set1))))
(define intersect?
(lambda (set1 set2)
(cond
((null? set1) #f)
(else (or (member? (car set1) set2) (intersect? (cdr set1) set2))))))
(define intersect ;definition in the book
(lambda (set1 set2)
(cond
((null? set1) (quote ()))
(else (cond
((member? (car set1) set2) (cons (car set1) (intersect (cdr set1) set2)))
(else (intersect (cdr set1) set2)))))))
(define intersect2 ;to make sure duplicates do not occur
(lambda (set1 set2)
(cond
((null? set1) (quote ()))
(else (cond
((member? (car set1) set2) (cons (car set1) (intersect (cdr set1) (rember (car set1) set2))))
(else (intersect (cdr set1) set2)))))))
(define union
(lambda (set1 set2)
(cond
((null? set1) set2)
((member? (car set1) set2) (union (cdr set1) set2))
(else
(cons (car set1) (union (cdr set1) set2))))))
(define difference
(lambda (set1 set2)
(cond
((null? set1) (quote()))
((member? (car set1) set2) (difference (cdr set1) set2))
(else
(cons (car set1) (difference (cdr set1) set2))))))
(define intersectall
(lambda (l-set)
(cond
((null? (cdr l-set)) (car l-set))
(else (intersect (car l-set) (intersectall (cdr l-set)))))))
(define a-pair?
(lambda (x)
(cond
((null? x) #f)
((atom? x) #f)
((null? (cdr x)) #f)
((null? (cdr (cdr x))) #t)
(else #f))))
(define first
(lambda (p)
(car p)))
(define second
(lambda (p)
(car (cdr p))))
(define third
(lambda (p)
(car (cdr (cdr p)))))
(define build
(lambda (s1 s2)
(cons s1 (cons s2 (quote())))))
;rel - relation - list of pairs
;fun - functions; at most one output for each input
(define fun?
(lambda (rel)
(set? (firsts rel))))
(define revrel ;reverse the relation (inverse)
(lambda (rel)
(cond
((null? rel) (quote ()))
(else (cons (revpair (car rel)) (revrel (cdr rel)))))))
(define revpair
(lambda (pair)
(build (second pair) (first pair))))
;fullfun - one-to-one function
(define fullfun?
(lambda (fun)
(set? (seconds fun))))
(define one-to-one?
(lambda (fun)
(fun? (revrel fun))))
;craziness - rember-f returns a function that takes two values, a and l
(define rember-f
(lambda (test?)
(lambda (a l)
(cond
((null? l) (quote()))
((test? (car l) a) (cdr l))
(else (cons (car l) ((rember-f test?) a (cdr l))))))))
(define eq?-c
(lambda (a)
(lambda (x)
(eq? x a))))
(define rember-eq? (rember-f eq?)) ;deprecated by just saying ((rember-f eq?) a l)
(define insertL-f
(lambda (test?)
(lambda (old new l)
(cond
((null? l) (quote()))
((test? (car l) old) (cons new l))
(else (cons (car l) ((insertL-f test?) old new (cdr l))))))))
(define insertR-f
(lambda (test?)
(lambda (old new l)
(cond
((null? l) (quote()))
((test? (car l) old) (cons old (cons new (cdr l))))
(else (cons (car l) ((insertR-f test?) old new (cdr l))))))))
(define seqL
(lambda (new old l)
(cons new (cons old l))))
(define seqR
(lambda (new old l)
(cons old (cons new l))))
(define insert-g
(lambda (seq)
(lambda (new old l)
(cond
((null? l) (quote()))
((eq? (car l) old) (seq new old (cdr l)))
(else (cons (car l) ((insert-g seq) new old (cdr l))))))))
;(define insertL (insert-g seqL))
;(define insertR (insert-g seqR))
;(define insertL (insert-g (lambda (new old l) (cons new (cons old l))))) <--this is clearer than having to remember what 'seq' stands for
(define seqS
(lambda (new old l)
(cons new l)))
;(define subst (insert-g seqS))
(define atom-to-function
(lambda (x)
(cond
((eq? x (quote +)) o+)
((eq? x (quote x)) *)
(else ^))))
;deprecated by chapter 10
;(define value
; (lambda (nexp)
; (cond
; ((atom? nexp) nexp)
; (else
; ((atom-to-function (operator nexp)) (value (1st-sub-exp nexp)) (value (2nd-sub-exp nexp)))))))
(define multirember-f
(lambda (test?)
(lambda (a lat)
(cond
((null? lat) (quote ()))
((eq? (car lat) a) ((multirember-f test?) a (cdr lat)))
(else
(cons (car lat) ((multirember-f test?) a (cdr lat))))))))
;(define multirember-eq? (multirember test?))
(define eq?-tuna
(eq?-c (quote tuna)))
(define multiremberT
(lambda (test? lat)
(cond
((null? lat) (quote ()))
((test? (car lat)) (multiremberT test? (cdr lat)))
(else (cons (car lat) (multiremberT test? (cdr lat)))))))
(define a-friend
(lambda (x y)
(null? y)))
(define multirember&co
(lambda (a lat col) ;col stands for 'collector' or 'continuation'
(cond
((null? lat) (col (quote ()) (quote())))
((eq? (car lat) a) (multirember&co a (cdr lat) (lambda (newlat seen) (col newlat (cons (car lat) seen)))))
(else
(multirember&co a (cdr lat) (lambda (newlat seen) (col (cons (car lat) newlat) seen)))))))
;(define new-friend
; (lambda (newlat seen)
; (col newlat (cons (car lat) seen))))
(define new-friend
(lambda (newlat seen)
(a-friend newlat cons (quote tuna) seen)))
(define latest-friend
(lambda (newlat seen) (a-friend (cons (quote and) newlat) seen)))
(define last-friend
(lambda (x y)
(length x)))
(define multiinsertLR
(lambda (new oldL oldR lat)
(cond
((null? lat) (quote ()))
((eq? (car lat) oldL) (cons oldL (multiinsertLR new oldL oldR (cdr lat))))
((eq? (car lat) oldR) (cons oldR (cons new (multiinsertLR new oldL oldR (cdr lat)))))
(else
(cons (car lat) (multiinsertLR new oldL oldR (cdr lat)))))))
(define multiinsertLR&co
(lambda (new oldL oldR lat col)
(cond
((null? lat) (col (quote ()) 0 0))
((eq? (car lat) oldL) (multiinsertLR&co new oldL oldR (cdr lat) (lambda (newlat L R) (col (cons new (cons oldL newlat)) (add1 L) R)))) ;L and R are the sumber of insertions that have occurred
((eq? (car lat) oldR) (multiinsertLR&co new oldL oldR (cdr lat) (lambda (newlat L R) (col (cons oldR (cons new newlat)) L (add1 R)))))
(else
(multiinsertLR&co new oldL oldR (cdr lat) (lambda (newlat L R) (col (cons (car lat) newlat L R ))))))))
(define even?
(lambda (n)
(= (* (quotient n 2) 2) n)))
(define evens-only*
(lambda (l)
(cond
((null? l) (quote ()))
((atom? (car l))
(cond
((even? (car l)) (cons (car l) (evens-only* (cdr l))))
(else (evens-only* (cdr l)))))
(else (cons (evens-only* (car l)) (evens-only* (cdr l)))))))
(define evens-only*&co
(lambda (l col)
(cond
((null? l) (col (quote ()) 1 0))
((atom? (car l))
(cond
((even? (car l)) (evens-only*&co (cdr l) (lambda (newl p s) (col (cons (car l) newl) (* (car l) p) s))))
(else (evens-only*&co (cdr l) (lambda (newl p s) col newl p (o+ car l) s)))))
(else (evens-only*&co (car l) (lambda (al ap as) (evens-only*&co (cdr l) (lambda (dl dp ds) (col (cons al dl) (* ap dp) (o+ as ds))))))))))
(define looking
(lambda (a lat)
(keep-looking a (pick 1 lat) lat)))
;partial function -- it may never stop!
(define keep-looking ;unnatural recursion because it does not recur on a part of lat
(lambda (a sorn lat) ;sorn - symbol or number
(cond
((number? sorn)
(keep-looking a (pick sorn lat) lat))
(else
(eq? sorn a)))))
(define eternity ;the most partial function. It never reaches its goal.
(lambda (x)
(eternity x)))
(define shift
(lambda (pair)
(build (first (first pair))
(build (second (first pair))
(second pair)))))
(define align ;not a partial function
(lambda (pora)
(cond
((atom? pora) pora)
((a-pair? (first pora)) (align (shift pora))) ;shift creates an argument for align that is not part of original argument -- violates 7th commandment
(else (build (first pora) (align (second pora)))))))
(define length*
(lambda (pora)
(cond
((atom? pora) 1)
(else
(o+ (length* (first pora)) (length* (second pora)))))))
(define weight*
(lambda (pora)
(cond
((atom? pora) 1)
(else
(o+ (* (weight* (first pora)) 2) (weight* second pora))))))
(define shuffle ;a partial function
(lambda (pora)
(cond
((atom? pora) pora)
((a-pair? (first pora)) (shuffle (revpair pora)))
(else (build (first pora) (shuffle (second pora)))))))
(define C ;Lothar Collatz conjecture
(lambda (n)
(cond
((one? n) 1)
(else
(cond
((even? n) (C (quotient n 2)))
(else (C (add1 (* 3 n)))))))))
(define A ;Ackermann function
(lambda (n m)
(cond
((zero? n) (add1 m))
((zero? m) (A (sub1 n) 1))
(else (A (sub1 n) (A n (sub1 m)))))))
;cannot define a function will-stop?
(lambda (l) ;name: length0
(cond
((null? l) 0)
(else (add1 (eternity (cdr l)))))) ;determines the length of the empty list
(lambda (l) ;name: length<=1
(cond
((null? l) 0)
(else
(add1 ((lambda (l)
(cond
((null? l) 0)
(else (add1 (eternity (cdr l)))))) (cdr l))))))
((lambda (mk-length) ;this function creates length0
(mk-length mk-length))
(lambda (mk-length)
(lambda (l)
(cond
((null? l) 0)
(else (add1 (mk-length (cdr l))))))))
((lambda (mk-length) ;this function creates length1
(mk-length mk-length))
(lambda (mk-length)
(lambda (l)
(cond
((null? l) 0)
(else (add1 ((mk-length eternity) (cdr l))))))))
((lambda (mk-length) ;length<=2
(mk-length (mk-length (mk-length eternity))))
(lambda (length)
(lambda (l)
(cond
((null? l) 0)
(else (add1 (length (cdr l))))))))
((lambda (mk-length) ;length<=2
(mk-length (mk-length (mk-length eternity))))
(lambda (length)
(lambda (l)
(cond
((null? l) 0)
(else (add1 (length (cdr l))))))))
((lambda (mk-length) ;length<=3
(mk-length (mk-length (mk-length (mk-length eternity)))))
(lambda (length)
(lambda (l)
(cond
((null? l) 0)
(else (add1 (length (cdr l))))))))
;recursion is like an infinite tower of applications of mk-length to an arbitrary function
((lambda (mk-length) ;this function creates length
(mk-length mk-length))
(lambda (mk-length)
((lambda (length)
(lambda (l)
(cond
((null? l) 0)
(else (add1 (length (cdr l)))))))
(lambda (x)
((mk-length mk-length) x)))))
(lambda (le)
((lambda (mk-length) (mk-length mk-length))
(lambda (mk-length)
(le (lambda (x)
((mk-length mk-length) x))))))
(define Y ;the applicative Y function
(lambda (le)
((lambda (f) (f f))
(lambda (f)
(le (lambda (x) ((f f) x)))))))
;CHAPTER 10-What is the value of all this?
(define lookup-in-entry
(lambda (name entry entry-f)
(lookup-in-entry-help name (first entry) (second entry)) entry-f))
(define lookup-in-entry-help
(lambda (name names values entry-f)
(cond
((null? names) (entry-f name))
((eq? (car names) name) (car values))
(else (lookup-in-entry-help name (cdr names) (cdr values) entry-f)))))
(define extend-table cons)
(define lookup-in-table
(lambda (name table table-f)
(cond
((null? table) (table-f name))
(else (lookup-in-entry name (car table) (lambda (name)
(lookup-in-table name (cdr table) table-f)))))))
(define expression-to-action ;reminiscent of atom-to-function from chapter 8
(lambda (e)
(cond
((atom? e) (atom-to-action e))
(else (list-to-action e)))))
(define atom-to-action
(lambda (e)
(cond
((number? e) *const)
((eq? e #t) *const)
((eq? e #f) *const)
((eq? e (quote cons)) *const)
((eq? e (quote car)) *const)
((eq? e (quote cdr)) *const)
((eq? e (quote null?)) *const)
((eq? e (quote eq?)) *const)
((eq? e (quote atom?)) *const)
((eq? e (quote zero?)) *const)
((eq? e (quote add1)) *const)
((eq? e (quote sub1)) *const)
((eq? e (quote number?)) *const)
(else *identifier))))
(define list-to-action
(lambda e
(cond
((atom? (car e))
(cond
((eq? (car e) (quote quote)) *quote)
((eq? (car e) (quote lambda)) *lambda)
((eq? (car e) (quote cond)) *cond)
(else *application)))
(else *application))))
(define value
(lambda (e)
(meaning e (quote()))))
(define meaning
(lambda (e table)
((expression-to-action e) e table)))
(define *const
(lambda (e table)
(cond
((number? e) e)
((eq? e #t) #t)
((eq? e #f) #f)
(else (build (quote primitive) e)))))
(define *quote
(lambda (e table)
(text-of e)))
(define text-of second)
(define *identifier
(lambda (e table)
(lookup-in-table e table initial-table)))
(define initial-table
(lambda (name)
(car (quote()))))
(define *lambda
(lambda (e table)
(build (quote non-primitive)
(cons table (cdr e)))))
(define table-of first)
(define formals-of second)
(define body-of third)
(define evcon
(lambda (lines table)
(cond
((else? (question-of (car lines))) (meaning (answer-of (car lines)) table))
((meaning (question-of (car lines)) table) (meaning (answer-of (car lines)) table))
(else (evcon (cdr lines) table)))))
(define else?
(lambda (x)
(cond
((atom? x) (eq? x (quote else)))
(else #f))))
(define question-of first)
(define answer-of second)
(define *cond
(lambda (e table)
(evcon (cond-lines-of e) table)))
(define cond-lines-of cdr)
(define evlis
(lambda (args table)
(cond
((null? args) (quote ()))
(else
(cons (meaning (car args) table) (evlis (cdr args) table))))))
(define *application
(lambda (e table)
(apply
(meaning (function-of e) table)
(evlis (arguments-of e) table))))
(define function-of car)
(define arguments-of cdr)
(define primitive?
(lambda (l)
(eq? (first l) (quote primitive))))
(define non-primitive?
(lambda (l)
(eq? (first l) (quote non-primitive))))
(define apply
(lambda (fun vals)
(cond
((primitive? fun)
(apply-primitive (second fun) vals))
((non-primitive? fun)
(apply-closure (second fun) vals)))))
(define apply-primitive
(lambda (name vals)
(cond
((eq? name (quote cons)) (cons (first vals) (second vals)))
((eq? name (quote car)) (car (first vals)))
((eq? name (quote cdr)) (cdr (first vals)))
((eq? name (quote null?)) (null? (first vals)))
((eq? name (quote eq?)) (eq? (first vals) (second vals)))
((eq? name (quote atom?)) (:atom? (first vals)))
((eq? name (quote zero?)) (zero? (first vals)))
((eq? name (quote add1)) (add1 (first vals)))
((eq? name (quote sub1)) (sub1 (first vals)))
((eq? name (quote number?)) (number? (first vals))))))
(define :atom?
(lambda (x)
(cond
((atom? x) #t)
((null? x) #f)
((eq? (car x) (quote primitive)) #t)
((eq? (car x) (quote non-primitive)) #t)
(else #f))))
(define apply-closure
(lambda (closure vals)
(meaning (body-of closure)
(extend-table (new-entry (formals-of closure) vals) (table-of closure)))))
(define new-entry build)