Skip to content

Latest commit

 

History

History
 
 

RLHF pipeline for the creation of StackLLaMa: a Stack exchange llama-7b model.

There were three main steps to the training process:

  1. Supervised fine-tuning of the base llama-7b model to create llama-7b-se:
    • torchrun --nnodes 1 --nproc_per_node 8 examples/research_projects/stack_llama/scripts/supervised_finetuning.py --model_path=<LLAMA_MODEL_PATH> --streaming --learning_rate 1e-5 --max_steps 5000 --output_dir ./llama-se
  2. Reward modeling using dialog pairs from the SE dataset using the llama-7b-se to create llama-7b-se-rm:
    • torchrun --nnodes 1 --nproc_per_node 8 examples/research_projects/stack_llama/scripts/reward_modeling.py --model_name=<LLAMA_SE_MODEL>
  3. RL fine-tuning of llama-7b-se with the llama-7b-se-rm reward model:
    • accelerate launch --multi_gpu --num_machines 1 --num_processes 8 examples/research_projects/stack_llama/scripts/rl_training.py --log_with=wandb --model_name=<LLAMA_SE_MODEL> --reward_model_name=<LLAMA_SE_RM_MODEL> --adafactor=False --tokenizer_name=<LLAMA_TOKENIZER> --save_freq=100 --output_max_length=128 --batch_size=8 --gradient_accumulation_steps=8 --batched_gen=True --ppo_epochs=4 --seed=0 --learning_rate=1.4e-5 --early_stopping=True --output_dir=llama-se-rl-finetune-128-8-8-1.4e-5_adam

LoRA layers were using at all stages to reduce memory requirements. At each stage the peft adapter layers were merged with the base model, using:

python examples/research_projects/stack_llama/scripts/merge_peft_adapter.py --adapter_model_name=XXX --base_model_name=YYY --output_name=ZZZ

Note that this script requires peft>=0.3.0.

For access to the base llama-7b model, please see Meta's release and request form.