forked from huggingface/trl
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adds VLM Training support to SFTTrainer + VSFT script (huggingface#1518)
* adds option to skip dataset preparation in SFTTrainer * before changing the template * adds support for new schema * a few fixes to data collator to support new schema * updates args * precommit * adds sys prompt to chat template and other fixes * updates template, fixes collator for multiple images * precommit * rename vsft to vstf_llava * adding integration tests * adds integration test for vsft * precommit * adds back chat template * docs * typo * adds eval, precommit * adds peft launch args * formatting * fixes no deps tests by checking if PIL lib exists * Update __init__.py --------- Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
- Loading branch information
1 parent
087fe54
commit 346c99d
Showing
8 changed files
with
377 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,207 @@ | ||
# flake8: noqa | ||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" | ||
# regular: | ||
python examples/scripts/vsft.py \ | ||
--model_name_or_path="llava-hf/llava-1.5-7b-hf" \ | ||
--report_to="wandb" \ | ||
--learning_rate=1.4e-5 \ | ||
--per_device_train_batch_size=8 \ | ||
--gradient_accumulation_steps=1 \ | ||
--output_dir="data/vsft-llava-1.5-7b-hf" \ | ||
--logging_steps=5 \ | ||
--num_train_epochs=1 \ | ||
--push_to_hub \ | ||
--gradient_checkpointing \ | ||
--remove_unused_columns=False \ | ||
--torch_dtype=float16 \ | ||
--fp16=True \ | ||
--dataset_name=HuggingFaceH4/llava-instruct-mix-vsft \ | ||
# peft: | ||
python examples/scripts/vsft.py \ | ||
--model_name_or_path="llava-hf/llava-1.5-7b-hf" \ | ||
--report_to="wandb" \ | ||
--learning_rate=1.4e-5 \ | ||
--per_device_train_batch_size=8 \ | ||
--gradient_accumulation_steps=1 \ | ||
--output_dir="data/vsft-llava-1.5-7b-hf" \ | ||
--logging_steps=5 \ | ||
--num_train_epochs=1 \ | ||
--push_to_hub \ | ||
--gradient_checkpointing \ | ||
--remove_unused_columns=False \ | ||
--torch_dtype=float16 \ | ||
--fp16=True \ | ||
--dataset_name=HuggingFaceH4/llava-instruct-mix-vsft \ | ||
--use_peft=True \ | ||
--lora_r=64 \ | ||
--lora_alpha=16 \ | ||
--lora_target_modules=all-linear" | ||
# evaluation: | ||
To evaluate, first install the lmms-eval framework: pip install git+https://github.com/EvolvingLMMs-Lab/lmms-eval.git | ||
then run: | ||
accelerate launch --num_processes=8 -m lmms_eval \ | ||
--model llava_hf \ | ||
--model_args pretrained=llava-hf/llava-1.5-7b-hf \ | ||
--tasks mmbench \ | ||
--batch_size 1 \ | ||
--output_path ./logs/ \ | ||
--log_sample | ||
""" | ||
import logging | ||
import os | ||
from contextlib import nullcontext | ||
|
||
TRL_USE_RICH = os.environ.get("TRL_USE_RICH", False) | ||
|
||
from trl.commands.cli_utils import init_zero_verbose, SftScriptArguments, TrlParser | ||
|
||
if TRL_USE_RICH: | ||
init_zero_verbose() | ||
FORMAT = "%(message)s" | ||
|
||
from rich.console import Console | ||
from rich.logging import RichHandler | ||
|
||
import torch | ||
from datasets import load_dataset | ||
|
||
from tqdm.rich import tqdm | ||
from transformers import AutoTokenizer, AutoProcessor, TrainingArguments, LlavaForConditionalGeneration | ||
|
||
from trl import ( | ||
ModelConfig, | ||
RichProgressCallback, | ||
SFTTrainer, | ||
get_peft_config, | ||
get_quantization_config, | ||
get_kbit_device_map, | ||
) | ||
|
||
tqdm.pandas() | ||
|
||
if TRL_USE_RICH: | ||
logging.basicConfig(format=FORMAT, datefmt="[%X]", handlers=[RichHandler()], level=logging.INFO) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = TrlParser((SftScriptArguments, TrainingArguments, ModelConfig)) | ||
args, training_args, model_config = parser.parse_args_and_config() | ||
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False) | ||
# Force use our print callback | ||
if TRL_USE_RICH: | ||
training_args.disable_tqdm = True | ||
console = Console() | ||
|
||
################ | ||
# Model, Tokenizer & Processor | ||
################ | ||
LLAVA_CHAT_TEMPLATE = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. {% for message in messages %}{% if message['role'] == 'user' %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] %}{% if item['type'] == 'text' %}{{ item['text'] }}{% elif item['type'] == 'image' %}<image>{% endif %}{% endfor %}{% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}""" | ||
|
||
torch_dtype = ( | ||
model_config.torch_dtype | ||
if model_config.torch_dtype in ["auto", None] | ||
else getattr(torch, model_config.torch_dtype) | ||
) | ||
quantization_config = get_quantization_config(model_config) | ||
model_kwargs = dict( | ||
revision=model_config.model_revision, | ||
trust_remote_code=model_config.trust_remote_code, | ||
attn_implementation=model_config.attn_implementation, | ||
torch_dtype=torch_dtype, | ||
device_map=get_kbit_device_map() if quantization_config is not None else None, | ||
quantization_config=quantization_config, | ||
) | ||
tokenizer = AutoTokenizer.from_pretrained(model_config.model_name_or_path, use_fast=True) | ||
tokenizer.chat_template = LLAVA_CHAT_TEMPLATE | ||
processor = AutoProcessor.from_pretrained(model_config.model_name_or_path) | ||
processor.tokenizer = tokenizer | ||
|
||
model = LlavaForConditionalGeneration.from_pretrained(model_config.model_name_or_path, **model_kwargs) | ||
|
||
################ | ||
# Create a data collator to encode text and image pairs | ||
################ | ||
|
||
class LLavaDataCollator: | ||
def __init__(self, processor): | ||
self.processor = processor | ||
|
||
def __call__(self, examples): | ||
texts = [] | ||
images = [] | ||
for example in examples: | ||
if len(example["images"]) > 1: | ||
raise ValueError("This collator only supports one image per example") | ||
messages = example["messages"] | ||
text = self.processor.tokenizer.apply_chat_template( | ||
messages, tokenize=False, add_generation_prompt=False | ||
) | ||
texts.append(text) | ||
images.append(example["images"][0]) | ||
|
||
batch = self.processor(texts, images, return_tensors="pt", padding=True) | ||
|
||
labels = batch["input_ids"].clone() | ||
if self.processor.tokenizer.pad_token_id is not None: | ||
labels[labels == self.processor.tokenizer.pad_token_id] = -100 | ||
batch["labels"] = labels | ||
|
||
return batch | ||
|
||
data_collator = LLavaDataCollator(processor) | ||
|
||
################ | ||
# Dataset | ||
################ | ||
raw_datasets = load_dataset(args.dataset_name) | ||
train_dataset = raw_datasets["train"] | ||
eval_dataset = raw_datasets["test"] | ||
|
||
################ | ||
# Optional rich context managers | ||
############### | ||
init_context = nullcontext() if not TRL_USE_RICH else console.status("[bold green]Initializing the SFTTrainer...") | ||
save_context = ( | ||
nullcontext() | ||
if not TRL_USE_RICH | ||
else console.status(f"[bold green]Training completed! Saving the model to {training_args.output_dir}") | ||
) | ||
|
||
################ | ||
# Training | ||
################ | ||
with init_context: | ||
trainer = SFTTrainer( | ||
model=model, | ||
args=training_args, | ||
train_dataset=train_dataset, | ||
eval_dataset=eval_dataset, | ||
dataset_text_field="text", # need a dummy field | ||
tokenizer=tokenizer, | ||
peft_config=get_peft_config(model_config), | ||
callbacks=[RichProgressCallback] if TRL_USE_RICH else None, | ||
data_collator=data_collator, | ||
dataset_kwargs={"skip_prepare_dataset": True}, | ||
) | ||
|
||
trainer.train() | ||
|
||
with save_context: | ||
trainer.save_model(training_args.output_dir) | ||
trainer.push_to_hub() |
Oops, something went wrong.