Skip to content

Robust Spectral Clustering. Implementation of "Robust Spectral Clustering for Noisy Data: Modeling Sparse Corruptions Improves Latent Embeddings".

License

Notifications You must be signed in to change notification settings

abojchevski/rsc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Robust Spectral Clustering (RSC)

Implementation of the method proposed in the paper: "Robust Spectral Clustering for Noisy Data: Modeling Sparse Corruptions Improves Latent Embeddings", Aleksandar Bojchevski, Yves Matkovic, and Stephan Günnemann, SIGKDD 2017.

Installation

python setup.py install

Requirements

  • numpy/scipy
  • sklearn

Demo

See example.ipynb for a comparison with vanilla Spectral Clustering on the moons dataset.

Cite

Please cite our paper if you use this code in your own work.

@inproceedings{bojchevski2017robust,
  title={Robust Spectral Clustering for Noisy Data: Modeling Sparse Corruptions Improves Latent Embeddings},
  author={Bojchevski, Aleksandar and Matkovic, Yves and G{\"u}nnemann, Stephan},
  booktitle={Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining},
  pages={737--746},
  year={2017},
  organization={ACM}
}

About

Robust Spectral Clustering. Implementation of "Robust Spectral Clustering for Noisy Data: Modeling Sparse Corruptions Improves Latent Embeddings".

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published