-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathconfigure.py
61 lines (42 loc) · 1.6 KB
/
configure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
class Config(object):
train_epoch = 2 ** 9
train_size = int(2 ** 10)
eval_size = 2 ** 3
batch_size = int(2 ** 4 * 1.25)
batch_epoch = train_size // batch_size
size = int(2 ** 8) # int(2 ** 7)
replace_num = int(0.368 * batch_size)
learning_rate = 8e-5 # 1e-4
show_gap = 2 ** 2 # time
eval_gap = 2 ** 2 # time
gpu_limit = 0.9 # 0.0 ~ 1.0
gpu_id = 1
data_dir = '/mnt/sdb1/data_sets'
aerial_dir = os.path.join(data_dir, 'AerialImageDataset/train')
cloud_dir = os.path.join(data_dir, 'ftp.nnvl.noaa.gov_color_IR_2018')
grey_dir = os.path.join(data_dir, 'CloudGreyDataset_%dx%d' % (size, size))
def __init__(self, model_dir='mod'):
self.model_dir = model_dir
self.model_name = 'mod'
self.model_path = os.path.join(self.model_dir, self.model_name)
self.model_npz = os.path.join(self.model_dir, self.model_name + '.npz')
self.model_log = os.path.join(self.model_dir, 'training_npy.txt')
def run():
import cv2
import numpy as np
idxs = set([int(n[:6]) for n in os.listdir('result')])
dilate_kernel = np.ones((3, 3))
for i in idxs:
aerial = cv2.imread('result/%06d-4-aerial.png' % i)
mask01 = cv2.imread('result/%06d-0-cloud3.png' % i)
mask01 = cv2.dilate(mask01, dilate_kernel)
result = aerial
cv2.imwrite('result_dict/%06d-3-result-thin.png' % i, result)
pass
if __name__ == '__main__':
# from mod_eval import run
# from mod_replace import run
# from mod_cloud_detect import run
# from mod_cloud_remove import run
run()