From 1a7320058cc39b45101cefa6f7fbb363043b6902 Mon Sep 17 00:00:00 2001 From: duxin Date: Mon, 7 Nov 2022 16:42:32 +0900 Subject: [PATCH] update README --- README.md | 39 +++++++++++++++------------------------ 1 file changed, 15 insertions(+), 24 deletions(-) diff --git a/README.md b/README.md index 26278e7..50f5f0a 100644 --- a/README.md +++ b/README.md @@ -218,18 +218,18 @@ In FIRE, the `slicing` and similarity computation are done in a similar way to v - Slicing: ```python - funcs1, measures1 = model[["apple", "pear", ...]] # (n1, D) - funcs2, measures2 = model[["iphone", "fruit", ...]] # (n1, D) + x1 = model[["apple", "pear", ...]] # FIRETensor: (n1, D) + x2 = model[["iphone", "fruit", ...]] # FIRETensor: (n1, D) ``` - Computation of paired similarity (where n1 == n2): ```python - sim = measures2.integral(funcs1) # (n1,) - + measures1.integral(funcs2) # (n2,) + sim = x2.measures.integral(x1.funcs) # (n1,) + + x1.measures.integral(x2.funcs) # (n2,) ``` - Computation of cross similarity: ```python - sim = measures2.integral(funcs1, cross=True) # (n1, n2) - + measures1.integral(funcs2, cross=True).T # (n2, n1) -> transpose -> (n1, n2) + sim = x2.measures.integral(x1.funcs, cross=True) # (n1, n2) + + x1.measures.integral(x2.funcs, cross=True).T # (n2, n1) -> transpose -> (n1, n2) ``` In addition to the way above where `integral` must be explicitly invoked, @@ -237,25 +237,16 @@ a more friendly way is also provided, as below: ```python # paired similarity # sim: (n1,) -sim = (funcs1 * measures2) # (n1, K) where K is the number of locations in the measure - .sum(-1) - + (measures1 * funcs2) # (n2, K) - .sum(-1) +sim = x1.funcs * x2.measures # (n1,) + + x1.measures * x2.funcs # (n2,) # cross similarity -sim = funcs1 @ measures2 + measures1 @ funcs2 # (n1, n2) +sim = x1.funcs @ x2.measures + x1.measures @ x2.funcs # (n1, n2) ``` Furthermore, the two steps above can be done in one line: ```python sim = model[["apple", "pear", "melon"]] @ model[["iphone", "fruit"]] # (3, 2) - -# which is equivalent to below: -# slice1 = model[["apple", "pear", "melon"]] -# slice2 = model[["iphone", "fruit"]] -# funcs1, measures1 = slice1 -# funcs2, measures2 = slice2 -# sim = measures2.integral(funcs1, cross=True) + measures1.integral(funcs2, cross=True).T ``` @@ -270,16 +261,16 @@ $$ \text{sim}(w_i,w_j) \leftarrow \text{sim}(w_i,w_j) - \int f_i ~\mathrm{d}\mu_ is done by: ```python -funcs1, measures1 = [["apple", "pear"]] -funcs2, measures2 = [["fruit", "iphone"]] -sim_reg = measures2.integral(funcs1) + measures1.integral(funcs2) \ - - measures1.integral(funcs1) - measures2.integral(funcs2) +x1 = model[["apple", "pear"]] +x2 = model[["fruit", "iphone"]] +sim_reg = x2.measures.integral(x1.funcs) + x1.measures.integral(x2.funcs) \ + - x1.measures.integral(x1.funcs) - x2.measures.integral(x1.funcs) ``` or equivalently: ```python -sim_reg = ((funcs2 - funcs1) * measures1 + (funcs1 - funcs2) * measures2).sum(-1) +sim_reg = (x2.funcs - x1.funcs) * x1.measures + (x1.funcs - x2.funcs) * x2.measures ``` -where `funcs2 - funcs1` produces a new functional. +where `x2.funcs - x1.funcs` produces a new functional.