forked from kleinlee/DH_live
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_mini.py
152 lines (120 loc) · 5.77 KB
/
demo_mini.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
os.environ["kmp_duplicate_lib_ok"] = "true"
import os
from mini_live.obj.wrap_utils import index_wrap, index_edge_wrap
current_dir = os.path.dirname(os.path.abspath(__file__))
from mini_live.render import create_render_model
import pickle
import cv2
import time
import numpy as np
import glob
import random
import os
import sys
import torch
from talkingface.model_utils import LoadAudioModel, Audio2bs
from talkingface.data.few_shot_dataset import get_image
def run(video_path, pkl_path, wav_path, output_video_path):
Audio2FeatureModel = LoadAudioModel(r'checkpoint/lstm/lstm_model_epoch_325.pkl')
from talkingface.render_model_mini import RenderModel_Mini
renderModel_mini = RenderModel_Mini()
renderModel_mini.loadModel("checkpoint/DINet_mini/epoch_40.pth")
standard_size = 256
crop_rotio = [0.5, 0.5, 0.5, 0.5]
out_w = int(standard_size * (crop_rotio[0] + crop_rotio[1]))
out_h = int(standard_size * (crop_rotio[2] + crop_rotio[3]))
out_size = (out_w, out_h)
renderModel_gl = create_render_model((out_w, out_h), floor=20)
from mini_live.obj.obj_utils import generateWrapModel
from talkingface.utils import crop_mouth, main_keypoints_index
wrapModel, wrapModel_face = generateWrapModel()
with open(pkl_path, "rb") as f:
images_info = pickle.load(f)
images_info = np.concatenate([images_info, images_info[::-1]], axis=0)
cap = cv2.VideoCapture(video_path)
vid_frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
vid_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
vid_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
list_source_crop_rect = []
list_video_img = []
list_standard_img = []
list_standard_v = []
list_standard_vt = []
for frame_index in range(min(vid_frame_count, len(images_info))):
ret, frame = cap.read()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGBA)
source_pts = images_info[frame_index]
source_crop_rect = crop_mouth(source_pts[main_keypoints_index], vid_width, vid_height)
standard_img = get_image(frame, source_crop_rect, input_type="image", resize=standard_size)
standard_v = get_image(source_pts, source_crop_rect, input_type="mediapipe", resize=standard_size)
standard_vt = standard_v[:, :2] / standard_size
list_video_img.append(frame)
list_source_crop_rect.append(source_crop_rect)
list_standard_img.append(standard_img)
list_standard_v.append(standard_v)
list_standard_vt.append(standard_vt)
cap.release()
renderModel_mini.reset_charactor(list_standard_img, np.array(list_standard_v)[:, main_keypoints_index])
from talkingface.run_utils import calc_face_mat
mat_list, _, face_pts_mean_personal_primer = calc_face_mat(np.array(list_standard_v), renderModel_gl.face_pts_mean)
from mini_live.obj.wrap_utils import newWrapModel
face_wrap_entity = newWrapModel(wrapModel, face_pts_mean_personal_primer)
renderModel_gl.GenVBO(face_wrap_entity)
bs_array = Audio2bs(wav_path, Audio2FeatureModel)[5:] * 0.5
import uuid
task_id = str(uuid.uuid1())
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
save_path = "{}.mp4".format(task_id)
videoWriter = cv2.VideoWriter(save_path, fourcc, 25, (int(vid_width), int(vid_height)))
for frame_index in range(len(mat_list)):
if frame_index >= len(bs_array):
continue
bs = np.zeros([12], dtype=np.float32)
bs[:6] = bs_array[frame_index, :6]
# bs[2] = frame_index* 5
verts_frame_buffer = np.array(list_standard_vt)[frame_index, index_wrap, :2].copy() * 2 - 1
rgba = renderModel_gl.render2cv(verts_frame_buffer, out_size=out_size, mat_world=mat_list[frame_index].T,
bs_array=bs)
# rgb = cv2.cvtColor(rgba, cv2.COLOR_RGBA2RGB)
# rgba = cv2.resize(rgba, (128, 128))
rgba = rgba[::2, ::2, :]
gl_tensor = torch.from_numpy(rgba / 255.).float().permute(2, 0, 1).unsqueeze(0)
source_tensor = cv2.resize(list_standard_img[frame_index], (128, 128))
source_tensor = torch.from_numpy(source_tensor / 255.).float().permute(2, 0, 1).unsqueeze(0)
warped_img = renderModel_mini.interface(source_tensor.cuda(), gl_tensor.cuda())
image_numpy = warped_img.detach().squeeze(0).cpu().float().numpy()
image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0
image_numpy = image_numpy.clip(0, 255)
image_numpy = image_numpy.astype(np.uint8)
x_min, y_min, x_max, y_max = list_source_crop_rect[frame_index]
img_face = cv2.resize(image_numpy, (x_max - x_min, y_max - y_min))
img_bg = list_video_img[frame_index][:, :, :3]
img_bg[y_min:y_max, x_min:x_max, :3] = img_face[:, :, :3]
# cv2.imshow('scene', img_bg[:,:,::-1])
# cv2.waitKey(10)
# print(time.time())
videoWriter.write(img_bg[:, :, ::-1])
videoWriter.release()
os.system(
"ffmpeg -i {} -i {} -c:v libx264 -pix_fmt yuv420p {}".format(save_path, wav_path, output_video_path))
os.remove(save_path)
cv2.destroyAllWindows()
def main():
# 检查命令行参数的数量
if len(sys.argv) < 4:
print("Usage: python demo_mini.py <video_path> <audio_path> <output_video_name>")
sys.exit(1) # 参数数量不正确时退出程序
# 获取video_name参数
video_path = sys.argv[1]
print(f"Video path is set to: {video_path}")
wav_path = sys.argv[2]
print(f"Audio path is set to: {wav_path}")
output_video_name = sys.argv[3]
print(f"output video name is set to: {output_video_name}")
pkl_path = "{}/keypoint_rotate.pkl".format(video_path)
video_path = "{}/circle.mp4".format(video_path)
run(video_path, pkl_path, wav_path, output_video_name)
# 示例使用
if __name__ == "__main__":
main()