Skip to content

TotallyFine/DataScienceBowl18

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data Science Bowl

Code for 2018 data science bowl, using UNet and soft dice loss.

Because of my poor laptop, i haven't run the project so there may be many bugs.

FPN and other model will be implement, i'll run this project after next term begins.

data overview

data
├── stage1_sample_submission.csv 
├── stage1_test 
├── stage1_train 
└── stage1_train_labels.csv 
size num
(256, 256, 3) 334
(256, 320, 3) 112
(520, 696, 3) 92
(360, 360, 3) 91
(1024, 1024, 3) 16
(512, 640, 3) 13
(603, 1272, 3) 6
(260, 347, 3) 5
(1040, 1388, 3) 1

project structure

Kaggle18
├── config.py 
├── data 
│   ├── dataset.py 
│   ├── __init__.py 
│   └── Resize.py 
├── main.py 
├── model 
│   ├── BasicModule.py 
│   ├── checkpoints 
│   ├── __init__.py 
│   └── UNet.py 
├── README.md 
└── utils 
    ├── __init__.py 
    ├── Loss.py 
    ├── saved_loss.csv 
    ├── saved_lr.csv 
    └── util.py 

Acknowledgement

thanks to Andrea for overview of data.

thanks to Yun Chen for data preprocess and net model.

thanks to Stephen Bailey for run-length encoding algorithm.

About

pytorch project for data science bowl 18

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages