forked from open-mmlab/mmrotate
-
Notifications
You must be signed in to change notification settings - Fork 1
/
gather_models.py
265 lines (214 loc) · 9.18 KB
/
gather_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import glob
import json
import os.path as osp
import shutil
import subprocess
from collections import OrderedDict
import mmcv
import torch
import yaml
def ordered_yaml_dump(data, stream=None, Dumper=yaml.SafeDumper, **kwds):
class OrderedDumper(Dumper):
pass
def _dict_representer(dumper, data):
return dumper.represent_mapping(
yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, data.items())
OrderedDumper.add_representer(OrderedDict, _dict_representer)
return yaml.dump(data, stream, OrderedDumper, **kwds)
def process_checkpoint(in_file, out_file):
checkpoint = torch.load(in_file, map_location='cpu')
# remove optimizer for smaller file size
if 'optimizer' in checkpoint:
del checkpoint['optimizer']
# remove ema state_dict
for key in list(checkpoint['state_dict']):
if key.startswith('ema_'):
checkpoint['state_dict'].pop(key)
# if it is necessary to remove some sensitive data in checkpoint['meta'],
# add the code here.
if torch.__version__ >= '1.6':
torch.save(checkpoint, out_file, _use_new_zipfile_serialization=False)
else:
torch.save(checkpoint, out_file)
sha = subprocess.check_output(['sha256sum', out_file]).decode()
final_file = out_file.rstrip('.pth') + '-{}.pth'.format(sha[:8])
subprocess.Popen(['mv', out_file, final_file])
return final_file
def get_final_epoch(config):
cfg = mmcv.Config.fromfile('./configs/' + config)
return cfg.runner.max_epochs
def get_best_epoch(exp_dir):
best_epoch_full_path = list(
sorted(glob.glob(osp.join(exp_dir, 'best_*.pth'))))[-1]
best_epoch_model_path = best_epoch_full_path.split('/')[-1]
best_epoch = best_epoch_model_path.split('_')[-1].split('.')[0]
return best_epoch_model_path, int(best_epoch)
def get_real_epoch(config):
cfg = mmcv.Config.fromfile('./configs/' + config)
epoch = cfg.runner.max_epochs
if cfg.data.train.type == 'RepeatDataset':
epoch *= cfg.data.train.times
return epoch
def get_final_results(log_json_path, epoch, results_lut):
result_dict = dict()
with open(log_json_path, 'r') as f:
for line in f.readlines():
log_line = json.loads(line)
if 'mode' not in log_line.keys():
continue
if log_line['mode'] == 'train' and log_line['epoch'] == epoch:
result_dict['memory'] = log_line['memory']
if log_line['mode'] == 'val' and log_line['epoch'] == epoch:
result_dict.update({
key: log_line[key]
for key in results_lut if key in log_line
})
return result_dict
def get_dataset_name(config):
# If there are more dataset, add here.
name_map = dict(
HRSCDataset='HRSC 2016', SARDataset='SAR', DOTADataset='DOTA v1.0')
cfg = mmcv.Config.fromfile('./configs/' + config)
return name_map[cfg.dataset_type]
def convert_model_info_to_pwc(model_infos):
pwc_files = {}
for model in model_infos:
cfg_folder_name = osp.split(model['config'])[-2]
pwc_model_info = OrderedDict()
pwc_model_info['Name'] = osp.split(model['config'])[-1].split('.')[0]
pwc_model_info['In Collection'] = 'Please fill in Collection name'
pwc_model_info['Config'] = osp.join('configs', model['config'])
# get metadata
memory = round(model['results']['memory'] / 1024, 1)
epochs = get_real_epoch(model['config'])
meta_data = OrderedDict()
meta_data['Training Memory (GB)'] = memory
meta_data['Epochs'] = epochs
pwc_model_info['Metadata'] = meta_data
# get dataset name
dataset_name = get_dataset_name(model['config'])
# get results
results = []
# if there are more metrics, add here.
if 'mAP' in model['results']:
metric = round(model['results']['mAP'] * 100, 1)
results.append(
OrderedDict(
Task='Object Detection',
Dataset=dataset_name,
Metrics={'box AP': metric}))
pwc_model_info['Results'] = results
link_string = 'https://download.openmmlab.com/mmrotate/v0.1.0/'
link_string += '{}/{}'.format(model['config'].rstrip('.py'),
osp.split(model['model_path'])[-1])
pwc_model_info['Weights'] = link_string
if cfg_folder_name in pwc_files:
pwc_files[cfg_folder_name].append(pwc_model_info)
else:
pwc_files[cfg_folder_name] = [pwc_model_info]
return pwc_files
def parse_args():
parser = argparse.ArgumentParser(description='Gather benchmarked models')
parser.add_argument(
'root',
type=str,
help='root path of benchmarked models to be gathered')
parser.add_argument(
'out', type=str, help='output path of gathered models to be stored')
parser.add_argument(
'--best',
action='store_true',
help='whether to gather the best model.')
args = parser.parse_args()
return args
def main():
args = parse_args()
models_root = args.root
models_out = args.out
mmcv.mkdir_or_exist(models_out)
# find all models in the root directory to be gathered
raw_configs = list(mmcv.scandir('./configs', '.py', recursive=True))
# filter configs that is not trained in the experiments dir
used_configs = []
for raw_config in raw_configs:
if osp.exists(osp.join(models_root, raw_config)):
used_configs.append(raw_config)
print(f'Find {len(used_configs)} models to be gathered')
# find final_ckpt and log file for trained each config
# and parse the best performance
model_infos = []
for used_config in used_configs:
exp_dir = osp.join(models_root, used_config)
# check whether the exps is finished
if args.best is True:
final_model, final_epoch = get_best_epoch(exp_dir)
else:
final_epoch = get_final_epoch(used_config)
final_model = 'epoch_{}.pth'.format(final_epoch)
model_path = osp.join(exp_dir, final_model)
# skip if the model is still training
if not osp.exists(model_path):
continue
# get the latest logs
log_json_path = list(
sorted(glob.glob(osp.join(exp_dir, '*.log.json'))))[-1]
log_txt_path = list(sorted(glob.glob(osp.join(exp_dir, '*.log'))))[-1]
cfg = mmcv.Config.fromfile('./configs/' + used_config)
results_lut = cfg.evaluation.metric
if not isinstance(results_lut, list):
results_lut = [results_lut]
model_performance = get_final_results(log_json_path, final_epoch,
results_lut)
if model_performance is None:
continue
model_time = osp.split(log_txt_path)[-1].split('.')[0]
model_infos.append(
dict(
config=used_config,
results=model_performance,
epochs=final_epoch,
model_time=model_time,
final_model=final_model,
log_json_path=osp.split(log_json_path)[-1]))
# publish model for each checkpoint
publish_model_infos = []
for model in model_infos:
model_publish_dir = osp.join(models_out, model['config'].rstrip('.py'))
mmcv.mkdir_or_exist(model_publish_dir)
model_name = osp.split(model['config'])[-1].split('.')[0]
model_name += '_' + model['model_time']
publish_model_path = osp.join(model_publish_dir, model_name)
trained_model_path = osp.join(models_root, model['config'],
model['final_model'])
# convert model
final_model_path = process_checkpoint(trained_model_path,
publish_model_path)
# copy log
shutil.copy(
osp.join(models_root, model['config'], model['log_json_path']),
osp.join(model_publish_dir, f'{model_name}.log.json'))
shutil.copy(
osp.join(models_root, model['config'],
model['log_json_path'].rstrip('.json')),
osp.join(model_publish_dir, f'{model_name}.log'))
# copy config to guarantee reproducibility
config_path = model['config']
config_path = osp.join(
'configs',
config_path) if 'configs' not in config_path else config_path
target_config_path = osp.split(config_path)[-1]
shutil.copy(config_path, osp.join(model_publish_dir,
target_config_path))
model['model_path'] = final_model_path
publish_model_infos.append(model)
models = dict(models=publish_model_infos)
print(f'Totally gathered {len(publish_model_infos)} models')
mmcv.dump(models, osp.join(models_out, 'model_info.json'))
pwc_files = convert_model_info_to_pwc(publish_model_infos)
for name in pwc_files:
with open(osp.join(models_out, name + '_metafile.yml'), 'w') as f:
ordered_yaml_dump(pwc_files[name], f, encoding='utf-8')
if __name__ == '__main__':
main()