-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert.py
106 lines (82 loc) · 4.2 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import time
import torch
import h5py
# import rospy
import faiss
import cv2 as cv
import numpy as np
from queue import Queue
from PIL import Image as pil_Image
from cv_bridge import CvBridge, CvBridgeError
# ROS Messeage Related
from sensor_msgs.msg import Image
from std_msgs.msg import Header
# Applied NetVLAD
from utils.args_utils import *
from utils.gen_db_utils import make_render_dataset
from utils.save_utils import save_render_dataset
from utils.matching_utils import find_distance, calculate_score, lightglue_matcher
from utils.extractor_utils import feature_extractor, descriptor_extractor, roma_based_extractor
from dataset.transforms import *
from models.NetVLAD import NetVLAD
import pdb
if __name__ == '__main__':
device = 'cuda'
opt = argument_parser()
config = import_yaml(opt.config)
# [Part 1: Get Pre-trained NetVLAD Model]
# ===========================================================
print("\033[1;37m========== Get Pre-trained NetVLAD Model ==========\033[0m")
start_get_ptmodel = time.time()
model = NetVLAD(config)
model.load_state_dict(torch.load(config['pt_netvlad_path'])['state_dict'])
print(f"Get Pre-trained NetVLAD Model: {(time.time() - start_get_ptmodel)}")
# [Part 2: Make Render Dataset including Render Image and Camera Parameters]
# ===========================================================
print("\033[1;37m========== Render Image and Camera Parameters ==========\033[0m")
start_get_cam_params = time.time()
db = make_render_dataset(model, config['render_dataset_path'], transforms=T_KAIST)
print(f"Gen Render Database: {(time.time() - start_get_cam_params)}")
# [Part 3: Save HDF5 files in local path]
# ===========================================================
if config['save_db']:
print("\033[1;37m========== Save HDF5 Database ==========\033[0m")
start_save_db = time.time()
save_render_dataset(db, config['save_db_path'])
print(f"Save Render Database: {(time.time() - start_save_db)}")
# [Part 4: Find the nearest Distance btw VLAD vectors]
# ===========================================================
print("\033[1;37m========== Calculate VLAD Distance ==========\033[0m")
start_cal_dist = time.time()
cand_dist, cand_index = find_distance(db)
print(f"Calculate VLAD Distance: {(time.time() - start_cal_dist)}")
# [Part 5: Calculate Feature Extractor]
# ===========================================================
img1 = db[1]['image']
img2 = db[2]['image']
print("\033[1;37m========== Calculate Feature Extractor ==========\033[0m")
start_cal_feat = time.time()
img1_kpt = feature_extractor(config['extractor_method']['SuperPoint'], img1, config['pt_superpoint_path'])
img2_kpt = feature_extractor(config['extractor_method']['SuperPoint'], img2, config['pt_superpoint_path'])
print(f"Calculate Feature Extractor: {(time.time() - start_cal_feat)}")
# [Part 6: Calculate Feature Descriptor]
# ===========================================================
print("\033[1;37m========== Calculate Feature Descriptor ==========\033[0m")
start_cal_des = time.time()
img1_des = descriptor_extractor(config['descriptor_method']['SuperPoint'], img1, img1_kpt, config['pt_superpoint_path'])
img2_des = descriptor_extractor(config['descriptor_method']['SuperPoint'], img2, img2_kpt, config['pt_superpoint_path'])
print(f"Calculate Feature Descriptor: {(time.time() - start_cal_des)}")
# [Part 7: Calculate Feature Matcher]
# ===========================================================
print("\033[1;37m========== Calculate Feature Matcher ==========\033[0m")
start_feat_matcher = time.time()
lightglue_matcher(img1, img2, img1_kpt, img2_kpt, img1_des, img2_des, config, device)
print(f"Calculate Feature Matcher: {(time.time() - start_feat_matcher)}")
# ===========================================================
# Must checking Features and Matchers!!!!
# Something wired...;;;
# ===========================================================
pdb.set_trace()
# [Part 6: Change VINS-Mono Template using ROS]
# ===========================================================