-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet.py
96 lines (84 loc) · 3.69 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import numpy as np;
import sys;
class NeuralNet(object):
def __init__(self, sizes):
self.num_layers = len(sizes);
self.sizes = sizes;
self.biases = [np.random.randn(y, 1) for y in sizes[1:]];
self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])];
def feedforward(self, a):
for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w, a)+b);
return a;
def NNout(self, a):
for b, w in zip(self.biases, self.weights):
flag = False;
if a.shape[0] == 30:
flag = True;
outi = 0;
a = sigmoid(np.dot(w, a)+b);
if flag:
maxi = -sys.maxint;
for i in xrange(len(a)):
if a[i]>maxi:
maxi = a[i];
outi = i;
# print('NN Output: ', outi);
return outi;
def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None):
if test_data:
n_test = len(test_data);
n = len(training_data);
for j in xrange(epochs):
random.shuffle(training_data);
mini_batches = [training_data[k:k+mini_batch_size] for k in xrange(0, n, mini_batch_size)];
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta);
if test_data:
print("Epoch {0}: {1} / {2}".format(j, self.evaluate(test_data), n_test));
else:
print("Epoch {0} complete".format(j));
def update_mini_batch(self, mini_batch, eta):
derv_b = [np.zeros(b.shape) for b in self.biases];
derv_w = [np.zeros(w.shape) for w in self.weights];
for x, y in mini_batch:
delta_derv_b, delta_derv_w = self.backprop(x, y);
derv_b = [nb+dnb for nb, dnb in zip(derv_b, delta_derv_b)];
derv_w = [nw+dnw for nw, dnw in zip(derv_w, delta_derv_w)];
self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, derv_w)];
self.biases = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.biases, derv_b)];
def backprop(self, x, y):
derv_b = [np.zeros(b.shape) for b in self.biases];
derv_w = [np.zeros(w.shape) for w in self.weights];
# feedforward
activation = x;
activations = [x]; # list to store all the activations, layer by layer
zs = []; # list to store all the z vectors, layer by layer
for b, w in zip(self.biases, self.weights):
z = np.dot(w, activation)+b;
zs.append(z);
activation = sigmoid(z);
activations.append(activation);
# backward pass
delta = self.cost_derivative(activations[-1], y) * sigmoid_prime(zs[-1]);
derv_b[-1] = delta;
derv_w[-1] = np.dot(delta, activations[-2].transpose());
# l = 1 means the last layer of neurons, l = 2 is the
# second-last layer, and so on.
for l in xrange(2, self.num_layers):
z = zs[-l];
sp = sigmoid_prime(z);
delta = np.dot(self.weights[-l+1].transpose(), delta) * sp;
derv_b[-l] = delta;
derv_w[-l] = np.dot(delta, activations[-l-1].transpose());
return (derv_b, derv_w);
def evaluate(self, test_data):
print('Output of NN: ', self.feedforward(x));
test_results = [(np.argmax(self.feedforward(x)), y) for (x, y) in test_data];
return sum(int(x == y) for (x, y) in test_results);
def cost_derivative(self, output_activations, y):
return (output_activations-y);
def sigmoid(z):
return 1.0/(1.0+np.exp(-z));
def sigmoid_prime(z):
return sigmoid(z)*(1-sigmoid(z));