forked from EryiXie/PlaneRecNet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
planerecnet.py
677 lines (574 loc) · 27 KB
/
planerecnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
"""Part of the code is adapted from:
@dbolya yolact: https://github.com/aim-uofa/AdelaiDet/adet/modeling/solov2/solov2.py
Licensed under The MIT License [see LICENSE for details]
"""
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from data.config import cfg
from utils import timer
from models.functions.nms import point_nms, matrix_nms, mask_nms
from models.functions.funcs import bias_init_with_prob
from models.fpn import FPN
from models.backbone import construct_backbone
from data.augmentations import FastBaseTransform
torch.cuda.current_device()
class PlaneRecNet(nn.Module):
def __init__(self, cfg):
super().__init__()
# get the device of the model
self.device = torch.device(cfg.device)
self.depth_decoder_indices = cfg.depth.selected_layers
self.fpn_indices = cfg.fpn.selected_layers
# Instance parameters.
self.num_classes = cfg.num_classes
self.num_kernels = cfg.solov2.num_kernels
self.num_grids = cfg.solov2.num_grids
self.instance_in_features = cfg.solov2.instance_in_features
self.instance_strides = cfg.solov2.fpn_instance_strides
self.instance_in_channels = cfg.fpn.num_features # = fpn.
self.instance_channels = cfg.solov2.instance_channels
# Mask parameters.
self.mask_in_features = cfg.solov2.masks_in_features
self.mask_in_channels = cfg.fpn.num_features
self.mask_channels = cfg.solov2.masks_channels
self.num_masks = cfg.solov2.num_masks
# Inference parameters.
self.max_before_nms = cfg.solov2.nms_pre
self.score_threshold = cfg.solov2.score_thr
self.update_threshold = cfg.solov2.update_thr
self.mask_threshold = cfg.solov2.mask_thr
self.max_per_img = cfg.solov2.top_k
self.nms_kernel = cfg.solov2.nms_kernel
self.nms_sigma = cfg.solov2.nms_sigma
self.nms_type = cfg.solov2.nms_type
# build backbone and fpn
self.backbone = construct_backbone(cfg.backbone)
if cfg.freeze_bn:
self.freeze_bn()
src_channels = self.backbone.channels
self.fpn = FPN([src_channels[i] for i in self.fpn_indices], start_level=cfg.fpn.start_level)
# build depth decoder
self.depth_decoder = DepthDecoder_FPN()
# build the ins head.
instance_shapes = [cfg.fpn.num_features for _ in range(len(cfg.solov2.instance_in_features))]
self.inst_head = SOLOv2InsHead(cfg, instance_shapes)
# build the mask head.
mask_shapes = [cfg.fpn.num_features for _ in range(len(cfg.solov2.masks_in_features))]
self.mask_head = SOLOv2MaskHead(cfg, mask_shapes)
def forward(self, x):
# Backbone
with timer.env("backbone"):
features_encoder = self.backbone(x)
#for i in features: print(i.shape)
# Feature Pyramid Network
with timer.env("fpn"):
features = self.fpn([features_encoder[i] for i in self.fpn_indices])
# Instance Branch
with timer.env("instance head"):
ins_features = [features[f] for f in range(len(self.instance_in_features))]
ins_features = self.split_feats(ins_features)
cate_pred, kernel_pred = self.inst_head(ins_features)
# Mask Branch
with timer.env('mask head'):
mask_features = [features[f] for f in range(len(self.mask_in_features))]
mask_pred = self.mask_head(mask_features)
# Depth Decoding
with timer.env("depth_decoder"):
depth_pred = self.depth_decoder([features_encoder[i] for i in self.depth_decoder_indices], mask_pred, kernel_pred)
# Inference or output for trainng
with timer.env('Inferencing'):
if self.training:
#mask_feat_size = mask_pred.size()[-2:]
return mask_pred, cate_pred, kernel_pred, depth_pred
else:
# point nms.
cate_pred = [point_nms(cate_p.sigmoid(), kernel=2).permute(0, 2, 3, 1)
for cate_p in cate_pred]
# do inference for results.
results = self.inference(mask_pred, cate_pred, kernel_pred, depth_pred, x)
return results
@staticmethod
def split_feats(feats):
return (F.interpolate(feats[0], scale_factor=0.5, mode='bilinear', align_corners=False, recompute_scale_factor=False),
feats[1],
feats[2],
feats[3])
def save_weights(self, path):
""" Saves the model's weights using compression because the file sizes were getting too big. """
torch.save(self.state_dict(), path)
def load_weights(self, path):
""" Loads weights from a compressed save file. """
state_dict = torch.load(path)
self.load_state_dict(state_dict)
def init_weights(self, backbone_path):
""" Initialize weights for training. """
# Initialize the backbone with the pretrained weights.
self.backbone.init_backbone(backbone_path)
for name, module in self.named_modules():
is_conv_layer = isinstance(module, nn.Conv2d) # or is_script_conv
if is_conv_layer and module not in self.backbone.backbone_modules:
nn.init.xavier_uniform_(module.weight.data)
if module.bias is not None:
if 'inst_head' in name and 'cate_pred' in name:
prior_prob = cfg.solov2.focal_loss_init_pi
bias_value = bias_init_with_prob(prior_prob)
module.bias.data.fill_(bias_value)
else:
module.bias.data.fill_(0)
def freeze_bn(self, enable=False):
""" Adapted from https://discuss.pytorch.org/t/how-to-train-with-frozen-batchnorm/12106/8 """
for module in self.modules():
if isinstance(module, nn.BatchNorm2d):
module.train() if enable else module.eval()
module.weight.requires_grad = enable
module.bias.requires_grad = enable
def inference(self, pred_masks, pred_cates, pred_kernels, pred_depths, batched_images):
assert len(pred_cates) == len(pred_kernels)
results = []
num_ins_levels = len(pred_cates)
for img_idx in range(len(batched_images)):
# image size.
ori_img = batched_images[img_idx]
height, width = ori_img.size()[1], ori_img.size()[2]
ori_size = (height, width)
# prediction.
pred_cate = [pred_cates[i][img_idx].view(-1, self.num_classes).detach()
for i in range(num_ins_levels)]
pred_kernel = [pred_kernels[i][img_idx].permute(1, 2, 0).view(-1, self.num_kernels).detach()
for i in range(num_ins_levels)]
pred_mask = pred_masks[img_idx, ...].unsqueeze(0)
pred_cate = torch.cat(pred_cate, dim=0)
pred_kernel = torch.cat(pred_kernel, dim=0)
pred_depth = pred_depths[img_idx, ...].unsqueeze(0)
# inference for single image.
result = self.inference_single_image(pred_mask, pred_cate, pred_kernel, pred_depth, ori_size)
results.append(result)
return results
def inference_single_image(self, seg_preds, cate_preds, kernel_preds, depth_pred, ori_size):
result = {'pred_masks': None, 'pred_boxes': None, 'pred_classes': None, 'pred_scores': None, 'pred_depth': None,}
# depth interpolation
result['pred_depth'] = F.interpolate(depth_pred, size=ori_size, mode='bilinear', align_corners=False).detach()
# process.
inds = (cate_preds > self.score_threshold)
cate_scores = cate_preds[inds]
if len(cate_scores) == 0:
return result
# cate_labels & kernel_preds
inds = inds.nonzero(as_tuple=False)
cate_labels = inds[:, 1]
kernel_preds = kernel_preds[inds[:, 0]]
# trans vector.
size_trans = cate_labels.new_tensor(self.num_grids).pow(2).cumsum(0)
strides = kernel_preds.new_ones(size_trans[-1])
n_stage = len(self.num_grids)
strides[:size_trans[0]] *= self.instance_strides[0]
for ind_ in range(1, n_stage):
strides[size_trans[ind_ - 1]:size_trans[ind_]] *= self.instance_strides[ind_]
strides = strides[inds[:, 0]]
# mask encoding.
N, I = kernel_preds.shape
kernel_preds = kernel_preds.view(N, I, 1, 1)
seg_preds = F.conv2d(seg_preds, kernel_preds, stride=1).squeeze(0).sigmoid()
# mask.
seg_masks = seg_preds > self.mask_threshold
sum_masks = seg_masks.sum((1, 2)).float()
# filter.
keep = sum_masks > strides
if keep.sum() == 0:
return result
seg_masks = seg_masks[keep, ...]
seg_preds = seg_preds[keep, ...]
sum_masks = sum_masks[keep]
cate_scores = cate_scores[keep]
cate_labels = cate_labels[keep]
# mask scoring.
seg_scores = (seg_preds * seg_masks.float()).sum((1, 2)) / sum_masks
cate_scores *= seg_scores
# sort and keep top nms_pre
sort_inds = torch.argsort(cate_scores, descending=True)
if len(sort_inds) > self.max_before_nms:
sort_inds = sort_inds[:self.max_before_nms]
seg_masks = seg_masks[sort_inds, :, :]
seg_preds = seg_preds[sort_inds, :, :]
sum_masks = sum_masks[sort_inds]
cate_scores = cate_scores[sort_inds]
cate_labels = cate_labels[sort_inds]
if self.nms_type == "matrix":
# matrix nms & filter.
cate_scores = matrix_nms(cate_labels, seg_masks, sum_masks, cate_scores,
sigma=self.nms_sigma, kernel=self.nms_kernel)
keep = cate_scores >= self.update_threshold
elif self.nms_type == "mask":
# original mask nms.
keep = mask_nms(cate_labels, seg_masks, sum_masks, cate_scores,
nms_thr=self.mask_threshold)
else:
raise NotImplementedError
if keep.sum() == 0:
return result
seg_preds = seg_preds[keep, :, :]
cate_scores = cate_scores[keep]
cate_labels = cate_labels[keep]
# sort and keep top_k
sort_inds = torch.argsort(cate_scores, descending=True)
if len(sort_inds) > self.max_per_img:
sort_inds = sort_inds[:self.max_per_img]
seg_preds = seg_preds[sort_inds, :, :]
cate_scores = cate_scores[sort_inds]
cate_labels = cate_labels[sort_inds]
# reshape to original size.
seg_masks = F.interpolate(seg_preds.unsqueeze(0),
size=ori_size,
mode='bilinear', align_corners=False).squeeze(0)
seg_masks = seg_masks > self.mask_threshold
result['pred_scores'] = cate_scores
result['pred_classes'] = cate_labels
result['pred_masks'] = seg_masks
# get bbox from mask
pred_boxes = torch.zeros(seg_masks.size(0), 4)
for i in range(seg_masks.size(0)):
mask = seg_masks[i].squeeze()
ys, xs = torch.where(mask)
pred_boxes[i] = torch.tensor([xs.min(), ys.min(), xs.max(), ys.max()]).float()
result['pred_boxes'] = pred_boxes
return result
class SOLOv2InsHead(nn.Module):
def __init__(self, cfg, in_channels):
"""
SOLOv2 Instance Head.
"""
super().__init__()
self.num_classes = cfg.num_classes
self.num_kernels = cfg.solov2.num_kernels
self.num_grids = cfg.solov2.num_grids
self.instance_in_features = cfg.solov2.instance_in_features
self.instance_strides = cfg.solov2.fpn_instance_strides
self.instance_in_channels = cfg.fpn.num_features
self.instance_channels = cfg.solov2.instance_channels
self.num_levels = len(self.instance_in_features)
assert self.num_levels == len(self.instance_strides), \
print("Strides should match the features.")
assert len(set(in_channels)) == 1, \
print("Each level must have the same channel!")
head_configs = {"cate": (cfg.solov2.num_instance_convs,
cfg.solov2.use_dcn_in_instance,
False),
"kernel": (cfg.solov2.num_instance_convs,
cfg.solov2.use_dcn_in_instance,
cfg.solov2.use_coord_conv)
}
norm = None if cfg.solov2.norm == "none" else cfg.solov2.norm
for head in head_configs:
tower = []
head_depth, use_deformable, use_coord = head_configs[head]
for i in range(head_depth):
conv_func = nn.Conv2d
if i == 0:
if use_coord:
chn = self.instance_in_channels + 2
else:
chn = self.instance_in_channels
else:
chn = self.instance_channels
tower.append(conv_func(
chn, self.instance_channels,
kernel_size=3, stride=1,
padding=1, bias=norm is None
))
if norm == "GN":
tower.append(nn.GroupNorm(32, self.instance_channels))
tower.append(nn.ReLU(inplace=True))
self.add_module('{}_tower'.format(head),
nn.Sequential(*tower))
self.cate_pred = nn.Conv2d(
self.instance_channels, self.num_classes,
kernel_size=3, stride=1, padding=1
)
self.kernel_pred = nn.Conv2d(
self.instance_channels, self.num_kernels,
kernel_size=3, stride=1, padding=1
)
def forward(self, features):
"""
Arguments:
features (list[Tensor]): FPN feature map tensors in high to low resolution.
Each tensor in the list correspond to different feature levels.
Returns:
pass
"""
cate_pred = []
kernel_pred = []
for idx, feature in enumerate(features):
ins_kernel_feat = feature
# concat coord
x_range = torch.linspace(-1, 1, ins_kernel_feat.shape[-1], device=ins_kernel_feat.device)
y_range = torch.linspace(-1, 1, ins_kernel_feat.shape[-2], device=ins_kernel_feat.device)
y, x = torch.meshgrid(y_range, x_range)
y = y.expand([ins_kernel_feat.shape[0], 1, -1, -1])
x = x.expand([ins_kernel_feat.shape[0], 1, -1, -1])
coord_feat = torch.cat([x, y], 1)
ins_kernel_feat = torch.cat([ins_kernel_feat, coord_feat], 1)
# individual feature.
kernel_feat = ins_kernel_feat
seg_num_grid = self.num_grids[idx]
kernel_feat = F.interpolate(kernel_feat, size=seg_num_grid, mode='bilinear', align_corners=False)
cate_feat = kernel_feat[:, :-2, :, :]
# kernel
kernel_feat = self.kernel_tower(kernel_feat)
kernel_pred.append(self.kernel_pred(kernel_feat))
# cate
cate_feat = self.cate_tower(cate_feat)
cate_pred.append(self.cate_pred(cate_feat))
return cate_pred, kernel_pred
class SOLOv2MaskHead(nn.Module):
def __init__(self, cfg, input_shape):
"""
SOLOv2 Mask Head.
"""
super().__init__()
self.num_masks = cfg.solov2.num_masks
self.mask_in_features = cfg.solov2.masks_in_features
self.mask_in_channels = cfg.fpn.num_features
self.mask_channels = cfg.solov2.masks_channels
self.num_levels = len(input_shape)
assert self.num_levels == len(self.mask_in_features), \
print("Input shape should match the features.")
norm = None if cfg.solov2.norm == "none" else cfg.solov2.norm
self.convs_all_levels = nn.ModuleList()
for i in range(self.num_levels):
convs_per_level = nn.Sequential()
if i == 0:
conv_tower = list()
conv_tower.append(nn.Conv2d(
self.mask_in_channels, self.mask_channels,
kernel_size=3, stride=1,
padding=1, bias=norm is None
))
if norm == "GN":
conv_tower.append(nn.GroupNorm(32, self.mask_channels))
conv_tower.append(nn.ReLU(inplace=False))
convs_per_level.add_module('conv' + str(i), nn.Sequential(*conv_tower))
self.convs_all_levels.append(convs_per_level)
continue
for j in range(i):
if j == 0:
chn = self.mask_in_channels + 2 if i == 3 else self.mask_in_channels
conv_tower = list()
conv_tower.append(nn.Conv2d(
chn, self.mask_channels,
kernel_size=3, stride=1,
padding=1, bias=norm is None
))
if norm == "GN":
conv_tower.append(nn.GroupNorm(32, self.mask_channels))
conv_tower.append(nn.ReLU(inplace=False))
convs_per_level.add_module('conv' + str(j), nn.Sequential(*conv_tower))
upsample_tower = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
convs_per_level.add_module(
'upsample' + str(j), upsample_tower)
continue
conv_tower = list()
conv_tower.append(nn.Conv2d(
self.mask_channels, self.mask_channels,
kernel_size=3, stride=1,
padding=1, bias=norm is None
))
if norm == "GN":
conv_tower.append(nn.GroupNorm(32, self.mask_channels))
conv_tower.append(nn.ReLU(inplace=False))
convs_per_level.add_module('conv' + str(j), nn.Sequential(*conv_tower))
upsample_tower = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
convs_per_level.add_module('upsample' + str(j), upsample_tower)
self.convs_all_levels.append(convs_per_level)
self.conv_pred = nn.Sequential(
nn.Conv2d(
self.mask_channels, self.num_masks,
kernel_size=1, stride=1,
padding=0, bias=norm is None),
nn.GroupNorm(32, self.num_masks),
nn.ReLU(inplace=True)
)
def forward(self, features):
"""
Arguments:
features (list[Tensor]): FPN feature map tensors in high to low resolution.
Each tensor in the list correspond to different feature levels.
Returns:
mask_pred (Tensor [C x W x H]): Fused mask prediciton.
"""
assert len(features) == self.num_levels, \
print("The number of input features should be equal to the supposed level.")
# bottom features first.
feature_add_all_level = self.convs_all_levels[0](features[0])
for i in range(1, self.num_levels):
mask_feat = features[i]
if i == 3: # add for coord.
x_range = torch.linspace(-1, 1, mask_feat.shape[-1], device=mask_feat.device)
y_range = torch.linspace(-1, 1, mask_feat.shape[-2], device=mask_feat.device)
y, x = torch.meshgrid(y_range, x_range)
y = y.expand([mask_feat.shape[0], 1, -1, -1])
x = x.expand([mask_feat.shape[0], 1, -1, -1])
coord_feat = torch.cat([x, y], 1)
mask_feat = torch.cat([mask_feat, coord_feat], 1)
# add for top features.
# feature_add_all_level += self.convs_all_levels[i](mask_feat) # This inplace operation may cause RuntimeError for pytorch >= 1.10
feature_add_all_level = feature_add_all_level.clone() + self.convs_all_levels[i](mask_feat)
mask_pred = self.conv_pred(feature_add_all_level)
return mask_pred
class DepthDecoder_FPN(nn.Module):
def __init__(self):
super(DepthDecoder_FPN, self).__init__()
self.num_output_channels = 1
self.num_kernels = cfg.solov2.num_kernels
self.channels_kernels_flatten = 0
for i in cfg.solov2.num_grids:
self.channels_kernels_flatten += i*i
self.latlayer1 = nn.Conv2d(2048, 256, kernel_size=1, stride=1, padding=0)
self.latlayer2 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0)
self.latlayer3 = nn.Conv2d( 512, 256, kernel_size=1, stride=1, padding=0)
self.latlayer4 = nn.Conv2d( 256, 256, kernel_size=1, stride=1, padding=0)
self.conv1 = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=0),
nn.BatchNorm2d(256, eps=0.001, momentum=0.01),
nn.ReLU(inplace=True)
)
self.conv2 = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=0),
nn.BatchNorm2d(128, eps=0.001, momentum=0.01),
nn.ReLU(inplace=True)
)
self.conv3 = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=0),
nn.BatchNorm2d(128, eps=0.001, momentum=0.01),
nn.ReLU(inplace=True)
)
self.conv4 = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=0),
nn.BatchNorm2d(128, eps=0.001, momentum=0.01),
nn.ReLU(inplace=True)
)
self.deconv1 = nn.Sequential(
torch.nn.Upsample(scale_factor=2, mode='nearest', align_corners=None),
nn.ReflectionPad2d(1),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=0),
nn.BatchNorm2d(256, eps=0.001, momentum=0.01),
nn.ReLU(inplace=True)
)
self.deconv2 = nn.Sequential(
torch.nn.Upsample(scale_factor=2, mode='nearest', align_corners=None),
nn.ReflectionPad2d(1),
nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=0),
nn.BatchNorm2d(128, eps=0.001, momentum=0.01),
nn.ReLU(inplace=True)
)
self.deconv3 = nn.Sequential(
torch.nn.Upsample(scale_factor=2, mode='nearest', align_corners=None),
nn.ReflectionPad2d(1),
nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=0),
nn.BatchNorm2d(128, eps=0.001, momentum=0.01),
nn.ReLU(inplace=True)
)
self.deconv4 = nn.Sequential(
torch.nn.Upsample(scale_factor=2, mode='nearest', align_corners=None),
nn.ReflectionPad2d(1),
nn.Conv2d(256, 64, kernel_size=3, stride=1, padding=0),
nn.BatchNorm2d(64, eps=0.001, momentum=0.01),
nn.ReLU(inplace=True)
)
self.depth_pred = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(64, self.num_output_channels, kernel_size=3, stride=1, padding=0),
nn.Softplus()
)
self.conv1x1 = nn.Sequential(
nn.Conv2d(self.channels_kernels_flatten, 256, kernel_size=1, stride=1, padding=0)
)
self.refine_conv = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(512, 128, kernel_size=3, stride=1, padding=0),
nn.BatchNorm2d(128, eps=0.001, momentum=0.01),
nn.ReLU(inplace=True)
)
def forward(self, feature_maps, seg_preds, kernel_preds):
num_ins_levels = len(kernel_preds)
B = feature_maps[0].shape[0]
flatten_kernel = torch.cat([kernel_preds[i].permute(0, 2, 3, 1).view(B, -1, self.num_kernels) for i in range(num_ins_levels)], dim=1).detach()
_, N, I = flatten_kernel.shape
flatten_kernel = flatten_kernel.view(-1, N, I, 1, 1)
mask_preds = torch.cat([F.conv2d(seg_preds[img_idx].unsqueeze(0).detach(), flatten_kernel[img_idx], stride=1) for img_idx in range(B)], dim=0).sigmoid().detach()
mask_preds = self.conv1x1(mask_preds)
mask_preds = F.interpolate(mask_preds, scale_factor=0.25, mode='bilinear', align_corners=False, recompute_scale_factor=False)
feats = list(reversed(feature_maps))
x = self.deconv1(self.conv1(self.latlayer1(feats[0])))
x = self.refine_conv(torch.cat([x, torch.mul(x, mask_preds)], dim=1))
x = self.deconv2(torch.cat([self.conv2(self.latlayer2(feats[1])), x], dim=1))
x = self.deconv3(torch.cat([self.conv3(self.latlayer3(feats[2])), x], dim=1))
x = self.deconv4(torch.cat([self.conv4(self.latlayer4(feats[3])), x], dim=1))
x = self.depth_pred(x)
return x
if __name__ == "__main__":
import argparse
def parse_args(argv=None):
parser = argparse.ArgumentParser(description="For PlaneRecNet Debugging and Inference Time Measurement")
parser.add_argument(
"--trained_model",
default=None,
type=str,
help='Trained state_dict file path to open. If "interrupt", this will open the interrupt file.',
)
parser.add_argument(
"--config",
default="PlaneRecNet_50_config",
help="The config object to use.")
parser.add_argument(
"--fps",
action="store_true",
help="Testing running speed.")
global args
args = parser.parse_args(argv)
parse_args()
from data.config import set_cfg
from utils.utils import MovingAverage, init_console
init_console()
set_cfg(args.config)
net = PlaneRecNet(cfg)
if args.trained_model is not None:
net.load_weights(args.trained_model)
else:
net.init_weights(backbone_path="weights/" + cfg.backbone.path)
print(cfg.backbone.name)
net.eval()
net = net.cuda()
torch.set_default_tensor_type("torch.cuda.FloatTensor")
frame = torch.from_numpy(cv2.imread("data/example_nyu.jpg", cv2.IMREAD_COLOR)).cuda().float()
batch = FastBaseTransform()(frame.unsqueeze(0))
y = net(batch)
starter, ender = (
torch.cuda.Event(enable_timing=True),
torch.cuda.Event(enable_timing=True),
)
if args.fps:
net(batch)
avg = MovingAverage()
try:
while True:
timer.reset()
with timer.env("everything else"):
net(batch)
avg.add(timer.total_time())
print("\033[2J") # Moves console cursor to 0,0
timer.print_stats()
print(
"Avg fps: %.2f\tAvg ms: %.2f "
% (1000 / avg.get_avg(), avg.get_avg())
)
except KeyboardInterrupt:
pass
else:
exit()