forked from huggingface/trl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_iterative_sft_trainer.py
118 lines (103 loc) · 4.49 KB
/
test_iterative_sft_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from functools import partial
import torch
from datasets import Dataset
from parameterized import parameterized
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, TrainingArguments
from trl import IterativeSFTTrainer
class IterativeTrainerTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model_id = "trl-internal-testing/dummy-GPT2-correct-vocab"
cls.model = AutoModelForCausalLM.from_pretrained(cls.model_id)
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_id)
cls.tokenizer.pad_token = cls.tokenizer.eos_token
# get t5 as seq2seq example:
model_id = "trl-internal-testing/tiny-T5ForConditionalGeneration-correct-vocab-calibrated"
cls.t5_model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
cls.t5_tokenizer = AutoTokenizer.from_pretrained(model_id)
def _init_tensor_dummy_dataset(self):
dummy_dataset_dict = {
"input_ids": [
torch.tensor([5303, 3621, 3666, 1438, 318]),
torch.tensor([3666, 1438, 318, 3666, 1438, 318]),
torch.tensor([5303, 3621, 3666, 1438, 318]),
],
"attention_mask": [
torch.tensor([1, 1, 1, 1, 1]),
torch.tensor([1, 1, 1, 1, 1, 1]),
torch.tensor([1, 1, 1, 1, 1]),
],
"labels": [
torch.tensor([5303, 3621, 3666, 1438, 318]),
torch.tensor([3666, 1438, 318, 3666, 1438, 318]),
torch.tensor([5303, 3621, 3666, 1438, 318]),
],
}
dummy_dataset = Dataset.from_dict(dummy_dataset_dict)
dummy_dataset.set_format("torch")
return dummy_dataset
def _init_textual_dummy_dataset(self):
dummy_dataset_dict = {
"texts": ["Testing the IterativeSFTTrainer.", "This is a test of the IterativeSFTTrainer"],
"texts_labels": ["Testing the IterativeSFTTrainer.", "This is a test of the IterativeSFTTrainer"],
}
dummy_dataset = Dataset.from_dict(dummy_dataset_dict)
dummy_dataset.set_format("torch")
return dummy_dataset
def setUp(self):
# initialize trainer
self.model.train()
return super().setUp()
@parameterized.expand(
[
["gpt2", "tensor"],
["gpt2", "text"],
["t5", "tensor"],
["t5", "text"],
]
)
def test_iterative_step_from_tensor(self, model_name, input_name):
with tempfile.TemporaryDirectory() as tmp_dir:
# initialize dataset
if input_name == "tensor":
dummy_dataset = self._init_tensor_dummy_dataset()
inputs = {
"input_ids": dummy_dataset["input_ids"],
"attention_mask": dummy_dataset["attention_mask"],
"labels": dummy_dataset["labels"],
}
else:
dummy_dataset = self._init_textual_dummy_dataset()
inputs = {
"texts": dummy_dataset["texts"],
"texts_labels": dummy_dataset["texts_labels"],
}
if model_name == "gpt2":
model = self.model
tokenizer = self.tokenizer
else:
model = self.t5_model
tokenizer = self.t5_tokenizer
args = TrainingArguments(
output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=2, learning_rate=1e-3
)
iterative_trainer = IterativeSFTTrainer(model=model, args=args, tokenizer=tokenizer)
iterative_trainer.optimizer.zero_grad = partial(iterative_trainer.optimizer.zero_grad, set_to_none=False)
iterative_trainer.step(**inputs)
for param in iterative_trainer.model.parameters():
assert param.grad is not None