forked from huggingface/trl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_core.py
42 lines (34 loc) · 1.51 KB
/
test_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from trl.core import masked_mean, masked_var, masked_whiten, whiten
class CoreTester(unittest.TestCase):
"""
A wrapper class for testing core utils functions
"""
@classmethod
def setUpClass(cls):
cls.test_input = torch.Tensor([1, 2, 3, 4])
cls.test_mask = torch.Tensor([0, 1, 1, 0])
cls.test_input_unmasked = cls.test_input[1:3]
def test_masked_mean(self):
assert torch.mean(self.test_input_unmasked) == masked_mean(self.test_input, self.test_mask)
def test_masked_var(self):
assert torch.var(self.test_input_unmasked) == masked_var(self.test_input, self.test_mask)
def test_masked_whiten(self):
whiten_unmasked = whiten(self.test_input_unmasked)
whiten_masked = masked_whiten(self.test_input, self.test_mask)[1:3]
diffs = (whiten_unmasked - whiten_masked).sum()
assert abs(diffs.item()) < 0.00001