-
Notifications
You must be signed in to change notification settings - Fork 0
/
energy-plot.py
143 lines (86 loc) · 3.51 KB
/
energy-plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
#zylinder ohne shaper
#E_real = np.array([80,186,242,295,352,32,662,1173,1332,1063,569])
#E_fit = np.array([0.97844,2.4133,3.137,3.7597,4.3779,0.3457,7.2341,10.7222,11.7675,10.2165,6.485])
#E_real = np.array([569, 662,1173,1332,1063])
#E_fit = np.array([6.472, 7.19,10.703,11.733,10.19])
#FWHM = np.array([0.51, 0.44, 0.87, 0.64, 0.48])
# zylinder mit shaper
E_real = np.array([662,1173,1332,569,1063])
E_fit = np.array([0.753,1.163,1.271,0.7018,1.1080])
FWHM_E = np.array([0.052, 0.069,0.0645, 0.065, 0.055])
#mit shaper ToT
#ToT_real = np.array([662, 1063,1252])
#ToT_fit = np.array([91.00116606316232,95.21278835637344,107.05266288124014])
#FWHM_T = np.array([9.798621093190247,15.77351053281185,22.63164384355587])
#x_err = np.array([0,0,79.5])
#tot mit shaper final
ToT_real = np.array([662,727,1069,1252])
ToT_fit = np.array([77.29,80.00,88.00,91.91])
FWHM_T = np.array([4.26,5,4,11])
#print(ToT_real)
#print(ToT_fit)
#GSI ToT
ToT_GSI = np.array([18.53,18.91,20.73,21.19,22.76])
E_real_GSI = np.array([569,662,1063,1173,1332])
#E_fit_GSI = np.array([0.701803960984309,0.7535521180502402,1.1657715187599953,1.273437535904615])
#ToT_GSI = np.array([18.53,18.95,21.2,22.75])
FWHM_GSI = np.array([1.88,1.68,2.81,3.31,3.46])
#bi207 1069keV 20,2
#plt.plot(E_fit,E_real,ls='None',marker='.')
#plt.errorbar(E_fit,E_real, xerr= 0.5*FWHM_E , fmt='.',capsize = 3,color='k', label='zugeordnete Energie')
#plt.plot(ToT_fit,ToT_real, ls='None', marker='.')
#plt.errorbar(ToT_fit,ToT_real, xerr=0.5*FWHM_T,fmt='.',capsize = 3, label='zugeordnete Energie', color ='k')
#plt.plot(test_tot,test_E, ls='None', marker='.')
plt.errorbar(ToT_GSI,E_real_GSI,xerr=0.5*FWHM_GSI,fmt='.',capsize = 3,color='k', label='zugeordnete Energie')
#Energieauflösung
#E_fit_input = E_fit
#E_real_input = E_real
#FWHM_input = FWHM
#delta_E_fit = np.zeros([len(E_fit_input)])
#delta_E_real = np.zeros(len(E_fit_input))
#for i in range(0, len(E_fit_input), 1):
# print(i)
# delta_E_fit[i] = FWHM_input[i]/E_fit_input[i]
# delta_E_real[i] = delta_E_fit[i]*E_real_input[i]
#plt.plot(E_real, delta_E_fit, ls='None', marker = '.')
#print('%:',delta_E_fit)
#print('absolut:', delta_E_real)
#print(delta_E_fit*100)
from scipy.optimize import curve_fit
def fit_exp(x,a,b):
return a*np.exp(b*x)
def fit_log(x,a,b):
return a*np.log(x)+b
popt, pcov = curve_fit(fit_exp, ToT_GSI , E_real_GSI, bounds=([15,0],[35,1]) ,method ='trf')
#popt,pcov = curve_fit(fit, E_fit, E_real , bounds=([0,0,0],[1000,10,100]), method='trf' )
perr = np.sqrt(np.diag(pcov))
print(popt)
print(perr)
#slope, intercept, r_value, p_value, std_err = stats.linregress(E_fit, E_real)
slope, intercept, r_value, p_value, std_err = stats.linregress(ToT_GSI, E_real_GSI)
fit_data = np.array([slope, intercept])
#print(slope)
#print(intercept)
#print(r_value)
#print(p_value)
#print(std_err)
x_fit_E = np.linspace(17,24,10)
plt.plot(x_fit_E, intercept + slope*x_fit_E, 'r',label='linearer Fit')
x_fit = np.linspace(17,24,1000)
#plt.plot(x_fit, fit_exp(x_fit, *popt), label='exp. Fit',color='r')
plt.legend()
plt.grid()
#plt.text(470,1.2, 'Q(E) = %5.5fE + %5.5f' %tuple(fit_data))
plt.text(17,1200, '$E(T) = m \cdot T + n$')
#plt.text(17,1200, '$E(T)=a \cdot e^{(b \cdot x)}$')
plt.text(17,1125, '$m= 187.69{keV/ns} $')
plt.text(17,1050, '$n= -2873.54 keV $')
plt.title("")
plt.ylabel("Energie E (keV)")
plt.xlabel("ToT T (ns)")
#import tikzplotlib
#tikzplotlib.save("calib_ToT_GSI_linear.tex")
plt.show()