Skip to content

Josemtobon/Water-Quality-Analysis-and-Prediction

Repository files navigation

Water Quality Analysis and Prediction

This project uses the dataset Aquaculture - Water Quality Dataset
(Veeramsetty, Venkataramana; Arabelli, Rajeshwarrao; Bernatin, T., 2024) to train and test three different classifiers:
Random Forest, Support Vector Machine (SVM), and K-Nearest Neighbors (KNN). Finally, the best-performing model is used to classify real samples of water.


Online Version

You can access the app directly using this Streamlit link.


How to Run the Project Locally

  1. Clone the Repository

    git clone https://github.com/Josemtobon/Water-Quality-Analysis-and-Prediction.git
    cd Water-Quality-Analysis-and-Prediction
  2. Install Dependencies

    pip install -r requirements.txt
  3. Run the Streamlit App

    streamlit run Home.py

Repository Structure

├── best_model.joblib                  # Trained model with the best overall performance
├── clf_eval.py                        # Script to train and test models
├── data
│   ├── params.tsv                     # Parameters choose for models
│   ├── performance_results.tsv        # Performance metrics
│   └── WQD.tsv                        # Dataset file
├── Home.py                            # Main Streamlit app
├── images                             # Confusion matrices and ROC curve visualizations
│   ├── confusion_matrix_K-Nearest Neighbors.png
│   ├── confusion_matrix_Random Forest.png
│   ├── confusion_matrix_SVM.png
│   ├── roc_curve_K-Nearest Neighbors.png
│   ├── roc_curve_Random Forest.png
│   └── roc_curve_SVM.png
├── pages                              # Streamlit pages
│   ├── 2_📊_Distribution of Parameters.py
│   ├── 3_⚙️-_Analysis_of_Classifiers.py
│   └── 4_🧪_Classify Water Quality.py
├── requirements.txt                   # Dependecies
└── scaler.joblib                      # Preprocessing scaler file

Acknowledgements

Dataset: Aquaculture - Water Quality Dataset by Veeramsetty, Venkataramana; Arabelli, Rajeshwarrao; Bernatin, T. (2024).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages