-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_dialogue.py
731 lines (650 loc) · 31.6 KB
/
run_dialogue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
#!/usr/bin/env python
# coding=utf-8
"""
File: run_dialogue.py
Author: Lei Liu
Description: Official repository for the Short Research Paper "Prompt Learning to Mitigate Catastrophic Forgetting in
Cross-lingual Transfer for Open-domain Dialogue Generation" accepted for presentation at the 46th International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR '23).
<ACKNOWLEDGEMENTS>
A. Research Grants
This research is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada, the York
Research Chairs (YRC) program and an ORF-RE (Ontario Research Fund Research Excellence) award in BRAIN Alliance.
Particularly, Lei Liu, the first author of this paper, is supported by the SIGIR Student Travel Award and Academic
Excellence Fund for presenting this work at SIGIR '23.
B. Computing Resources
Computations were made on the supercomputer Béluga, managed by Calcul Québec and the Digital Research Alliance of Canada.
<CITATION>
Please cite our paper if you use any modules of our code.
@inproceedings{liu-etal-2023-prompt,
author = {Liu, Lei and Huang, Jimmy Xiangji},
title = {Prompt Learning to Mitigate Catastrophic Forgetting in Cross-Lingual Transfer for Open-Domain Dialogue Generation},
year = {2023},
isbn = {9781450394086},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3539618.3592043},
doi = {10.1145/3539618.3592043},
booktitle = {Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval},
pages = {2287–2292},
numpages = {6},
keywords = {catastrophic forgetting, few-shot cross-lingual transfer, dialogue generation, prompt learning, multitask learning},
location = {Taipei, Taiwan},
series = {SIGIR '23}
}
"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import nltk # Here to have a nice missing dependency error message early on
import numpy as np
from datasets import load_dataset, load_metric
import transformers
from filelock import FileLock
from transformers import (
AutoConfig,
AutoModelForSeq2SeqLM,
AutoTokenizer,
DataCollatorForSeq2Seq,
HfArgumentParser,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
set_seed,
)
from transformers.file_utils import is_offline_mode
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# modules for distinct n-gram
from distinct_n import split_sentences, distinct_ngrams
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.8.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
logger = logging.getLogger(__name__)
try:
nltk.data.find("tokenizers/punkt")
except (LookupError, OSError):
if is_offline_mode():
raise LookupError(
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
)
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
text_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
)
summary_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input evaluation data file to evaluate the metrics (rouge) on "
"(a jsonlines or csv file)."
},
)
test_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input test data file to evaluate the metrics (rouge) on " "(a jsonlines or csv file)."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_source_length: Optional[int] = field(
default=1024,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
max_target_length: Optional[int] = field(
default=128,
metadata={
"help": "The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
val_max_target_length: Optional[int] = field(
default=None,
metadata={
"help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": "Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
num_beams: Optional[int] = field(
default=None,
metadata={
"help": "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
"which is used during ``evaluate`` and ``predict``."
},
)
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
},
)
"""
************************************************************
The following four arguments are used for prompt learning.
************************************************************
"""
# task-specific prefix/prompt for the source text, e.g. "context" in response generation task
prefix: Optional[str] = field(
default=None, metadata={"help": "A prefix to add before every source text."}
)
# task-specific prefix/prompt for the target text, e.g. "response" in response generation task
target_prefix: Optional[str] = field(
default=None, metadata={"help": "A prefix to add before every target text."}
)
# The first two mask tokens used in pre-training mT5 models
mask_token_1: Optional[str] = field(
default=None, metadata={"help": "The first mask token that is used in pre-training mT5 models."}
)
mask_token_2: Optional[str] = field(
default=None, metadata={"help": "The second mask token that is used in pre-training mT5 models."}
)
def __post_init__(self):
if self.train_file is None and self.validation_file is None:
raise ValueError("The training/validation file is needed.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if self.val_max_target_length is None:
self.val_max_target_length = self.max_target_length
def main():
# See all possible arguments by passing the --help flag to this script.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if training_args.should_log else logging.WARN)
# Log on each process
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if training_args.should_log:
transformers.utils.logging.set_verbosity_info()
logger.info(f"Training/evaluation parameters {training_args}")
if data_args.prefix is None and model_args.model_name_or_path in [
"t5-small",
"t5-base",
"t5-large",
"t5-3b",
"t5-11b",
]:
logger.warning(
"You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
"`--prefix 'summarize: ' `"
)
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: please provide CSV/JSON training and evaluation files.
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
# In distributed training, the load_dataset function guarantees that only one local process
# can concurrently download the dataset.
datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model = AutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model.resize_token_embeddings(len(tokenizer))
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined.")
# Task-specific prompts for "context" and "response", respectively
prefix = data_args.prefix if data_args.prefix is not None else ""
target_prefix = data_args.target_prefix if data_args.target_prefix is not None else ""
# Mask tokens for prompt-based learning approaches
mask_token_1 = data_args.mask_token_1 if data_args.mask_token_1 is not None else ""
mask_token_2 = data_args.mask_token_2 if data_args.mask_token_2 is not None else ""
# Print out all four arguments used for prompt learning
print("\n*********************************************************")
print("Prompt for source text: " + prefix)
print("Prompt for target text: " + target_prefix)
print("Mask token 1: " + mask_token_1)
print("Mask token 2: " + mask_token_2)
print("***********************************************************\n")
# Get the names of all the columns in the training, validation and test set, respectively
if training_args.do_train:
column_names = datasets["train"].column_names
elif training_args.do_eval:
column_names = datasets["validation"].column_names
elif training_args.do_predict:
column_names = datasets["test"].column_names
else:
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
return
# Please specify the column names for both 'context' and 'response' in CSV/JSON files using the `text_column` and
# `summary_column` arguments. Otherwise, by default, the first column and the second column would be regarded as
# the 'context' and 'response' respectively.
#
# Get the column name for source text, i.e. 'context').
if data_args.text_column is None:
raise ValueError("Make sure that `text_column` corresponds to the column of `context` in your dataset.")
else:
text_column = data_args.text_column
if text_column not in column_names:
raise ValueError(
f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
)
# Get the column name for target text, i.e. 'response'.
if data_args.summary_column is None:
raise ValueError("Make sure that `summary_column` corresponds to the column of `response` in your dataset.")
else:
summary_column = data_args.summary_column
if summary_column not in column_names:
raise ValueError(
f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
)
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
padding = "max_length" if data_args.pad_to_max_length else False
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
logger.warning(
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
)
def preprocess_function(examples):
source_texts = examples[text_column]
target_texts = examples[summary_column]
# Format the source texts (i.e. 'contexts') depending on the values of all four arguments for prompt learning
temp_source_texts = []
if prefix and target_prefix:
if mask_token_1 and mask_token_2:
for source in source_texts:
temp_source_texts.append(prefix + " " + source + " " + target_prefix + " " + mask_token_1)
source_texts = temp_source_texts
else:
for source in source_texts:
temp_source_texts.append(prefix + " " + source + " " + target_prefix)
source_texts = temp_source_texts
else:
if mask_token_1 and mask_token_2:
for source in source_texts:
temp_source_texts.append(source + " " + mask_token_1)
source_texts = temp_source_texts
else:
for source in source_texts:
temp_source_texts.append(source)
source_texts = temp_source_texts
# Setup the tokenizer for source texts, i.e. 'contexts'
model_inputs = tokenizer(source_texts, max_length=data_args.max_source_length, padding=padding, truncation=True)
# Format the target texts (i.e. 'responses') depending on values of all four arguments for prompt learning
temp_target_texts = []
if prefix and target_prefix:
if mask_token_1 and mask_token_2:
for target in target_texts:
temp_target_texts.append(mask_token_1 + " " + target + " " + mask_token_2)
target_texts = temp_target_texts
else:
for target in target_texts:
temp_target_texts.append(target)
target_texts = temp_target_texts
else:
if mask_token_1 and mask_token_2:
for target in target_texts:
temp_target_texts.append(mask_token_1 + " " + target + " " + mask_token_2)
target_texts = temp_target_texts
else:
for target in target_texts:
temp_target_texts.append(target)
target_texts = temp_target_texts
# Setup the tokenizer for target texts, i.e. 'responses'
with tokenizer.as_target_tokenizer():
labels = tokenizer(target_texts, max_length=max_target_length, padding=padding, truncation=True)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100
# when we want to ignore padding in the loss.
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
labels["input_ids"] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
return model_inputs
# Tokenize the training set
if training_args.do_train:
if "train" not in datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = datasets["train"]
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
# Tokenize the validation set
if training_args.do_eval:
max_target_length = data_args.val_max_target_length
if "validation" not in datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = datasets["validation"]
if data_args.max_eval_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
# Tokenize the test set
if training_args.do_predict:
max_target_length = data_args.val_max_target_length
if "test" not in datasets:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = datasets["test"]
if data_args.max_predict_samples is not None:
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
predict_dataset = predict_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
# Data collator
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
# Automatic evaluation metrics including sacreBLEU and distinct n-grams
#
# The script for sacreBLEU is adapted from HuggingFace datasets at the following link:
# https://github.com/huggingface/datasets/tree/main/metrics/sacrebleu
metric_sacrebleu = load_metric('../sacrebleu/sacrebleu.py')
# For each batch, compute both sacreBLEU and distinct n-grams
def compute_metrics(eval_preds):
all_results = {}
preds, labels = eval_preds
# Get the 'predictions', i.e. 'responses' generated by models.
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
# When it comes to the prompt-based learning approaches,
# make sure to REMOVE the additional MASK TOKENS in the 'predictions'.
if mask_token_1 and mask_token_2:
temp_preds = []
for x in decoded_preds:
if x.startswith(mask_token_1 + " ") and x.endswith(" " + mask_token_2):
temp_preds.append(x[len(mask_token_1) + 1:-len(mask_token_2) - 1])
elif x.startswith(mask_token_1 + " "):
temp_preds.append(x[len(mask_token_1) + 1:])
elif x.endswith(" " + mask_token_2):
temp_preds.append(x[:-len(mask_token_2) - 1])
else:
temp_preds.append(x)
decoded_preds = temp_preds
# Remove white spaces in the 'predictions'
decoded_preds = [pred.strip() for pred in decoded_preds]
# The 'ground-truth responses', i.e. labels
if data_args.ignore_pad_token_for_loss:
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# When it comes to prompt-based learning approaches,
# make sure to REMOVE the additional MASK TOKENS in the 'ground-truth responses' as well.
if mask_token_1 and mask_token_2:
temp_labels = []
for x in decoded_labels:
if x.startswith(mask_token_1 + " ") and x.endswith(" " + mask_token_2):
temp_labels.append(x[len(mask_token_1) + 1:-len(mask_token_2) - 1])
elif x.startswith(mask_token_1 + " "):
temp_labels.append(x[len(mask_token_1) + 1:])
elif x.endswith(" " + mask_token_2):
temp_labels.append(x[:-len(mask_token_2) - 1])
else:
temp_labels.append(x)
decoded_labels = temp_labels
# Remove white spaces in the 'ground-truth responses'
decoded_labels = [label.strip() for label in decoded_labels]
# Compute distinct n-grams scores (i.e. dist-1/2)
#
# Tokenize all the 'predictions' in order to compute the distinct n-grams scores.
decoded_preds_split = split_sentences(decoded_preds, tokenizer)
result_distinct = distinct_ngrams(decoded_preds_split)
all_results = {**all_results, **result_distinct}
# Compute sacreBLEU scores (i.e. sacreBLEU-score/1/2/bp).
# IMPORTANT: for sacreBLEU, do NOT tokenize both the 'ground-truth responses' and 'predictions' here.
result_sacrebleu = metric_sacrebleu.compute(predictions=[pred.strip() for pred in decoded_preds],
references=[[label.strip()] for label in decoded_labels])
# Extract the metric results for sacreBLEU
all_results['sacrebleu_score'] = result_sacrebleu['score']
for i in range(2):
all_results['sacrebleu_%d' % (i + 1)] = result_sacrebleu['precisions'][i]
all_results['sacrebleu_bp'] = result_sacrebleu['bp']
return all_results
# Initialize our Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(
max_length=data_args.val_max_target_length, num_beams=data_args.num_beams, metric_key_prefix="eval"
)
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.do_predict:
logger.info("*** Predict ***")
predict_results = trainer.predict(
predict_dataset,
metric_key_prefix="predict",
max_length=data_args.val_max_target_length,
num_beams=data_args.num_beams,
)
metrics = predict_results.metrics
max_predict_samples = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
)
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
if trainer.is_world_process_zero():
if training_args.predict_with_generate:
predictions = tokenizer.batch_decode(
predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
# For prompt-based learning approaches, make sure to REMOVE the additional MASK TOKENS.
if mask_token_1 and mask_token_2:
temp_predictions = []
for prediction in predictions:
if prediction.startswith(mask_token_1 + " ") and prediction.endswith(" " + mask_token_2):
temp_predictions.append(prediction[len(mask_token_1) + 1:-len(mask_token_2) - 1])
elif prediction.startswith(mask_token_1 + " "):
temp_predictions.append(prediction[len(mask_token_1) + 1:])
elif prediction.endswith(" " + mask_token_2):
temp_predictions.append(prediction[:-len(mask_token_2) - 1])
else:
temp_predictions.append(prediction)
predictions = temp_predictions
# Remove white spaces in the 'predictions'.
predictions = [prediction.strip() for prediction in predictions]
# Output the 'predictions' into a *.txt file
output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
with open(output_prediction_file, "w") as writer:
writer.write("\n".join(predictions))
if training_args.push_to_hub:
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "summarization"}
trainer.push_to_hub(**kwargs)
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()