-
Notifications
You must be signed in to change notification settings - Fork 2
/
model_attn.py
177 lines (154 loc) · 7.89 KB
/
model_attn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
from torch import nn
from basic import SimpleCNN, MLP
import math
import torch.nn.functional as F
class Attention(nn.Module):
def __init__(self, config):
super(Attention, self).__init__()
self.config = config
self.embedding = nn.Embedding(config.word_num, config.word_embed_dim)
self.embedding.weight.requires_grad = True
ext_feats_size = 2 if config.ext_feats else 0
self.sm_cnn = SimpleCNN(
num_of_conv=1,
in_channels=1,
out_channels=config.output_channel,
kernel_size=[config.kernel_size],
in_features=config.word_embed_dim,
out_features=config.hidden_size,
active_func=nn.ReLU(),
dropout=config.dropout,
fc_layer=True
)
self.final_layers = nn.Sequential(
nn.Linear(config.hidden_size * 3,
config.hidden_layer_units),
nn.BatchNorm1d(config.hidden_layer_units),
nn.Tanh(),
nn.Dropout(config.dropout)
)
self.softmax = nn.Sequential(
nn.Linear(config.hidden_layer_units + ext_feats_size, config.num_classes),
nn.LogSoftmax(dim=1)
)
self.context_cnn = SimpleCNN(
num_of_conv=1,
in_channels=1,
out_channels=config.output_channel,
kernel_size=[config.kernel_size],
in_features=config.word_embed_dim,
out_features=config.hidden_size,
active_func=nn.ReLU(),
dropout=config.dropout,
fc_layer=True
)
self.cnn_attn = MLP(
in_features=config.hidden_size + (config.word_embed_dim if config.gating_source != "cnn" else config.hidden_size), # config.lstm_hidden * 2,
out_features=config.attn_hidden,
activation=nn.Tanh()
)
self.cnn_prob = nn.Linear(
in_features=config.attn_hidden,
out_features=1,
bias=False
)
self.attn_softmax = nn.Softmax(dim=1)
self.cos = nn.CosineSimilarity(dim=1, eps=1e-6)
self.key_linear = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size)
self.value_linear = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size)
self.query_linear = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size)
self.tfidf = nn.Embedding(config.word_num, 1)
def attn_context_ave(self, question_embed, answer_embed, batch_size):
question_len = question_embed.size(1)
answer_len = answer_embed.size(1)
dimension = question_embed.size(2)
question = torch.cat([question_embed.unsqueeze(2)] * answer_len, dim=2).view(-1, dimension)
answer = torch.cat([answer_embed.unsqueeze(1)] * question_len, dim=1).view(-1, dimension)
# (batch, question_len, answer_len, dim)
attn_prob = self.cos(answer, question).unsqueeze(1)
attn_answer = (answer * attn_prob).view(batch_size * question_len, answer_len, dimension)
feature = self.context_cnn(attn_answer).view(batch_size, question_len, -1)
feature = torch.sum(feature, dim=1) / question_len
return feature
def attn_context(self, question_embed, answer_embed, batch_size):
question_len = question_embed.size(1)
answer_len = answer_embed.size(1)
dimension = question_embed.size(2)
question = torch.cat([question_embed.unsqueeze(2)] * answer_len, dim=2).view(-1, dimension)
answer = torch.cat([answer_embed.unsqueeze(1)] * question_len, dim=1).view(-1, dimension)
# (batch, question_len, answer_len, dim)
attn_prob = self.cos(answer, question).unsqueeze(1)
attn_answer = (answer * attn_prob).view(batch_size * question_len, answer_len, dimension)
feature = self.context_cnn(attn_answer)
# (batch * question_len, feature)
# question_embed = (batch, question_length, dim)
qa_comb = torch.cat([feature, question_embed.view(-1, dimension)], dim=1)
cnn_prob = self.attn_softmax(self.cnn_prob(self.cnn_attn(qa_comb)).view(batch_size, question_len))
print(cnn_prob)
# (batch * question_len, feature) * (batch_size * question_len)
feature = (feature.view(batch_size, question_len, -1) * cnn_prob.unsqueeze(2)).view(batch_size, question_len, -1)
feature = torch.sum(feature, dim=1)
return feature
def attention(self, query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)
# key = (batch_size, dim) value = (batch_size, question_len, dim)
scores = torch.matmul(query, key.transpose(-2, -1)) \
/ math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
def self_attn(self, question_embed, answer_embed, question_feature, answer_feature, batch_size):
# answer_feature = (batch_size, dim)
question_len = question_embed.size(1)
answer_len = answer_embed.size(1)
dimension = question_embed.size(2)
question = torch.cat([question_embed.unsqueeze(2)] * answer_len, dim=2).view(-1, dimension)
answer = torch.cat([answer_embed.unsqueeze(1)] * question_len, dim=1).view(-1, dimension)
# (batch, question_len, answer_len, dim)
attn_prob = self.cos(answer, question).unsqueeze(1)
attn_answer = (answer * attn_prob).view(batch_size * question_len, answer_len, dimension)
feature = self.context_cnn(attn_answer).view(batch_size, question_len, -1)
# (batch, question_len, feature)
feature, attn = self.attention(query=self.query_linear(question_feature), key=self.key_linear(feature), value=self.value_linear(feature))
# (batch, question_len, feature)
feature = torch.sum(feature, dim=1)
return feature
def attn_context_tfidf(self, question_embed, answer_embed, batch_size, query_ids):
question_len = question_embed.size(1)
answer_len = answer_embed.size(1)
dimension = question_embed.size(2)
question = torch.cat([question_embed.unsqueeze(2)] * answer_len, dim=2).view(-1, dimension)
answer = torch.cat([answer_embed.unsqueeze(1)] * question_len, dim=1).view(-1, dimension)
# (batch, question_len, answer_len, dim)
attn_prob = self.cos(answer, question).unsqueeze(1)
attn_answer = (answer * attn_prob).view(batch_size * question_len, answer_len, dimension)
feature = self.context_cnn(attn_answer).view(batch_size, question_len, -1)
query_weight = self.tfidf(query_ids)
normalized_weight = F.softmax(query_weight, dim=-2)
# (batch, question_len, 1)
feature = torch.sum(feature * normalized_weight, dim=1)
return feature
def forward(self, question, answer, ext_feats):
sent1 = self.embedding(question)
sent2 = self.embedding(answer)
feature1 = self.sm_cnn(sent1)
feature2 = self.sm_cnn(sent2)
if self.config.gating_source == "embed":
feature3 = self.attn_context(sent1, sent2, sent1.size(0))
elif self.config.gating_source == "ave":
feature3 = self.attn_context_ave(sent1, sent2, sent1.size(0))
elif self.config.gating_source == "self-attn":
feature3 = self.self_attn(sent1, sent2, feature1, feature2, sent1.size(0))
elif self.config.gating_source == "tf-idf":
feature3 = self.attn_context_tfidf(sent1, sent2, sent1.size(0), question)
feat_comb = torch.cat([feature1, feature2, feature3], dim=1)
feat = self.final_layers(feat_comb)
if self.config.ext_feats:
feat = torch.cat([feat, ext_feats], dim=1)
preds = self.softmax(feat)
return (preds, feat)