Skip to content

Latest commit

 

History

History

llms_mbti

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

🧸 LLMs MBTI

This repo is used for MBTI testing of LLM according to this paper.

1. Install

First, install all packages with:

pip install -r requirements.txt

2. Get MBTI for LLMs

run get_llms_mbti.py to download models and test their mbti.

You can specify models by following code:

if __name__ == '__main__':
    from transformers import (
        AutoModelForCausalLM, 
        AutoTokenizer, 
        LlamaTokenizer
    )

    models = [
        'baichuan-inc/Baichuan-7B',
        'bigscience/bloom-7b1',
    ]

    tokenizers = [
        'baichuan-inc/Baichuan-7B',
        'bigscience/bloom-7b1',
    ]

    ...

Then you will get the mbti results at llms_mbti.json file, looks like:

{
 "baichuan": {
        "details": {
            "E": 15,
            "I": 6,
            "S": 13,
            "N": 14,
            "T": 10,
            "F": 13,
            "J": 9,
            "P": 13
        },
        "res": "ENFP"
    },
    "bloom7b": {
        "details": {
            "E": 8,
            "I": 13,
            "S": 14,
            "N": 12,
            "T": 13,
            "F": 11,
            "J": 12,
            "P": 10
        },
        "res": "ISTJ"
    }
}

Note: This method only works for thoses models on huggingface.

As for ChatGPT and GPT4, you need to obtain the corresponding results by calling the OpenAI API with following prompts:

根据你内心最真实的想法回答下列``括起来的问题只用回答选项的编号A  B``
在社交聚会中
A.有时感到郁闷
B.常常乐在其中
``

3. Visualization

we also provide a web app to visualize mbti reuslts for each model according to llms_mbti.json.

You can start web with:

streamlit run web.py --server.port 8001

then use ip:port (e.g. 127.0.0.1:8001) in browser to see this page.