-
Notifications
You must be signed in to change notification settings - Fork 394
/
Copy pathiTrainingLogger.py
156 lines (133 loc) · 7.36 KB
/
iTrainingLogger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# !/usr/bin/env python3
"""
==== No Bugs in code, just some Random Unexpected FEATURES ====
┌─────────────────────────────────────────────────────────────┐
│┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐│
││Esc│!1 │@2 │#3 │$4 │%5 │^6 │&7 │*8 │(9 │)0 │_- │+= │|\ │`~ ││
│├───┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴───┤│
││ Tab │ Q │ W │ E │ R │ T │ Y │ U │ I │ O │ P │{[ │}] │ BS ││
│├─────┴┬──┴┬──┴┬──┴┬──┴┬──┴┬──┴┬──┴┬──┴┬──┴┬──┴┬──┴┬──┴─────┤│
││ Ctrl │ A │ S │ D │ F │ G │ H │ J │ K │ L │: ;│" '│ Enter ││
│├──────┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴─┬─┴────┬───┤│
││ Shift │ Z │ X │ C │ V │ B │ N │ M │< ,│> .│? /│Shift │Fn ││
│└─────┬──┴┬──┴──┬┴───┴───┴───┴───┴───┴──┬┴───┴┬──┴┬─────┴───┘│
│ │Fn │ Alt │ Space │ Alt │Win│ HHKB │
│ └───┴─────┴───────────────────────┴─────┴───┘ │
└─────────────────────────────────────────────────────────────┘
训练过程中的记录器,类似于SummaryWriter功能,只是SummaryWriter需要依赖于tensorboard和浏览器做可视化,
该工具依赖matplotlib采用静态本地图片存储的形式,便于服务器快速查看训练结果。
Authors: pankeyu
Date: 2021/10/17
"""
import os
import numpy as np
import matplotlib.pyplot as plt
class iSummaryWriter(object):
def __init__(self, log_path: str, log_name: str, params=[], extention='.png', max_columns=2,
log_title=None, figsize=None):
"""
初始化函数,创建日志类。
Args:
log_path (str): 日志存放文件夹
log_name (str): 日志文件名
parmas (list): 要记录的参数名字列表,e.g. -> ["loss", "reward", ...]
extension (str): 图片存储格式
max_columns (int): 一行中排列几张图,默认为一行2张(2个变量)的图。
"""
self.log_path = log_path
if not os.path.exists(log_path):
os.makedirs(log_path)
self.log_name = log_name
self.extention = extention
self.max_param_index = -1
self.max_columns_threshold = max_columns
self.figsize = figsize
self.params_dict = self.create_params_dict(params)
self.log_title = log_title
self.init_plt()
self.update_ax_list()
def init_plt(self) -> None:
plt.style.use('seaborn-darkgrid')
def create_params_dict(self, params: list) -> dict:
"""
根据传入需要记录的变量名列表,创建监控变量字典。
Args:
params (list): 监控变量名列表
Returns:
dict: 监控变量名字典 -> {
'loss': {'values': [0.44, 0.32, ...], 'steps': [10, 20, ...], 'index': 0},
'reward': {'values': [10.2, 13.2, ...], 'steps': [10, 20, ...], 'index': 1},
...
}
"""
params_dict = {}
for i, param in enumerate(params):
params_dict[param] = {'values': [], 'steps': [], 'index': i}
self.max_param_index = i
return params_dict
def update_ax_list(self) -> None:
"""
根据当前的监控变量字典,为每一个变量分配一个图区。
"""
# * 重新计算每一个变量对应的图幅索引
params_num = self.max_param_index + 1
if params_num <= 0:
return
self.max_columns = params_num if params_num < self.max_columns_threshold else self.max_columns_threshold
max_rows = (params_num - 1) // self.max_columns + 1 # * 所有变量最多几行
figsize = self.figsize if self.figsize else (self.max_columns * 6,max_rows * 3) # 根据图个数计算整个图的figsize
self.fig, self.axes = plt.subplots(max_rows, self.max_columns, figsize=figsize)
# * 如果只有一行但又不止一个图,需要手动reshape成(1, n)的形式
if params_num > 1 and len(self.axes.shape) == 1:
self.axes = np.expand_dims(self.axes, axis=0)
# * 重新设置log标题
log_title = self.log_title if self.log_title else '[Training Log] {}'.format(
self.log_name)
self.fig.suptitle(log_title, fontsize=15)
def add_scalar(self, param: str, value: float, epoch: int) -> None:
"""
添加一条新的变量值记录。
Args:
param (str): 变量名,e.g. -> 'loss'
value (float): 此时的值。
epoch (int): 此时的epoch数。
"""
# * 如果该参数是第一次加入,则将该参数加入到监控变量字典中
if param not in self.params_dict:
self.max_param_index += 1
self.params_dict[param] = {'values': [],
'steps': [], 'index': self.max_param_index}
self.update_ax_list()
self.params_dict[param]['values'].append(value)
self.params_dict[param]['steps'].append(epoch)
def record(self, dpi=200) -> None:
"""
调用该接口,对该类中目前所有监控的变量状态进行一次记录,将结果保存到本地文件中。
"""
for param, param_elements in self.params_dict.items():
param_index = param_elements["index"]
param_row, param_column = param_index // self.max_columns, param_index % self.max_columns
ax = self.axes[param_row, param_column] if self.max_param_index > 0 else self.axes
# ax.set_title(param)
ax.set_xlabel('Steps')
ax.set_ylabel(param)
ax.plot(self.params_dict[param]['steps'],
self.params_dict[param]['values'],
color='darkorange')
plt.savefig(os.path.join(self.log_path,
self.log_name + self.extention), dpi=dpi)
if __name__ == '__main__':
import random
import time
n_epochs = 10
log_path, log_name = './', 'test'
writer = iSummaryWriter(log_path=log_path, log_name=log_name)
for i in range(n_epochs):
loss, reward = 100 - random.random() * i, random.random() * i
writer.add_scalar('loss', loss, i)
writer.add_scalar('reward', reward, i)
writer.add_scalar('random', reward, i)
writer.record()
print("Log has been saved at: {}".format(
os.path.join(log_path, log_name)))
time.sleep(3)