forked from zhao-ht/GIMLET
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretraining_gimlet.py
741 lines (680 loc) · 31.7 KB
/
pretraining_gimlet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional
import datasets
from datasets import load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
DataCollatorForLanguageModeling,
HfArgumentParser,
Trainer,
TrainingArguments,
is_torch_tpu_available,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from transformers import AutoTokenizer
from basic_pipeline import load_graph_args,eval_result
from model import GIMLETConfig,GinConfig,KVPLMConfig,MoMuConfig,MolT5Config,get_model,GalacticaConfig
from dataloaders import graph_text_tokenizer_dict,graph_text_collator_dict,graphormer_transform_for_dataset,WrapDataset
import torch.utils.data
import re
import numpy as np
from sklearn.metrics import (roc_auc_score,f1_score,confusion_matrix,r2_score)
from tqdm import tqdm
import faulthandler
import matplotlib.pyplot as plt
faulthandler.enable()
check_min_version("4.24.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
os.environ["WANDB_DISABLED"] = "true"
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
)
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_overrides: Optional[str] = field(
default=None,
metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
transformer_backbone: str = field(default='')
attention_fasion: str= field(default='sequential')
def __post_init__(self):
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
"--config_overrides can't be used in combination with --config_name or --model_name_or_path"
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
max_seq_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated."
)
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
mlm_probability: float = field(
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
)
line_by_line: bool = field(
default=False,
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
rich_features: Optional[bool] = field(default=False)
transform_in_collator: Optional[bool] = field(default=False)
wrap_dataset: Optional[bool] = field(default=False)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
if extension not in ["csv", "json", "txt"]:
raise ValueError("`train_file` should be a csv, a json or a txt file.")
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
if extension not in ["csv", "json", "txt"]:
raise ValueError("`validation_file` should be a csv, a json or a txt file.")
# def eval_result(trainer,task_type='cla'):
#
# loader = trainer.get_eval_dataloader()
# model = trainer.model
# device=model.device
# tokenizer=trainer.tokenizer
#
# str_y='Yes'
# str_n='No'
#
# id_y=tokenizer.convert_tokens_to_ids(tokenizer.tokenize(str_y))[0]
# id_n=tokenizer.convert_tokens_to_ids(tokenizer.tokenize(str_n))[0]
# # id_y=trainer.tokenizer(str_y)['input_ids'][0]
# # id_n=trainer.tokenizer(str_n)['input_ids'][0]
# id_invalid=-100
#
#
# if task_type=='cla':
# model.eval()
# y_true, y_scores = [], []
#
# for step, batch in enumerate(loader):
# for key in batch.keys():
# batch[key] = batch[key].to(device)
# with torch.no_grad():
# labels = batch["labels"]
# if hasattr(model, 'decoder'):
# del batch["labels"]
# batch["max_length"] = 3 # <PAD> CLASS <EOS>
# output = model.generate(
# **batch, output_scores=True, return_dict_in_generate=True
# # num_beams=beam_size,
# # no_repeat_ngram_size=no_repeat_ngram_size,
# )
# logits = output.scores[0].unsqueeze(1) # logits of CLASS
# elif hasattr(model.base_model, 'decoder'): #galactica
# del batch["labels"]
# batch["max_new_tokens"] = 1 # <PAD> CLASS <EOS>
# # batch["max_length"] = 3
# output = model.generate(
# **batch, output_scores=True, return_dict_in_generate=True
# # num_beams=beam_size,
# # no_repeat_ngram_size=no_repeat_ngram_size,
# )
# # for i in range(output.sequences.shape[0]):
# # print(tokenizer.decode(output.sequences[i]))
# logits = output.scores[0].unsqueeze(1) # logits of CLASS
# elif hasattr(model,'graph_encoder'): #momu, contrastive model; the model code require label
# logits = model(**batch)['logits']
# else: #kvplm, self-masking model
# del batch["labels"]
# logits = model(**batch)['logits']
# index = labels != id_invalid #mask both text not answer and invalid labels; shape: [batch,answer length]
# if not isinstance(logits,dict): # for generative model
# # try:
# assert logits[index].ndim==2 # selected answer shape:[n_valid_sample,n_vocabulary]
# # except:
# # print(batch['labels'])
# # print(logits[index].shape)
# pred=(logits[index][:, id_y] - logits[index][:, id_n]).view([-1,1])
# true = labels[index].view(pred.shape)
# true[true == id_y] = 1
# true[true == id_n] = 0
# true[true == id_invalid] = -100
# else: # for contrastive model, logits is dict
# pred = (logits['pos'].unsqueeze(1)[index] - logits['neg'].unsqueeze(1)[index]).view([-1, 1]) #shape of logits['pos] and logits['pos] are [batch]
# true = labels[index].view(pred.shape)
# assert torch.sum(true == id_invalid) == 0 # For contrastive model, invalid label is previously replaced by id_invalid(-100). Replace it here. Not necessary, because only valid label are selected
#
# y_true.append(true)
# y_scores.append(pred)
#
# y_true = torch.cat(y_true, dim=0).cpu().numpy()
# y_scores = torch.cat(y_scores, dim=0).cpu().numpy()
# y_pred=(y_scores>0).astype(int)
#
# roc_list = []
# for i in range(y_true.shape[1]):
# # AUC is only defined when there is at least one positive data.
# if np.sum(y_true[:, i] == 1) > 0 and np.sum(y_true[:, i] == 0) > 0:
# is_valid = y_true[:, i] >= 0
# roc_list.append(roc_auc_score(y_true[is_valid, i], y_scores[is_valid, i]))
# else:
# print('{} is invalid'.format(i))
#
# if len(roc_list) < y_true.shape[1]:
# print(len(roc_list))
# print('Some target is missing!')
# print('Missing ratio: %f' % (1 - float(len(roc_list)) / y_true.shape[1]))
#
# acc = int((y_pred == y_true).sum()) / len(y_true)
# auc = roc_list
# f1 = f1_score(y_true,
# y_pred)
# con_m = confusion_matrix(y_true,
# y_pred)
# print('f1 ', f1)
# print('confusion matrix ', con_m)
# print('pred_rate ', y_pred.mean())
# return {'acc': acc, 'auc': auc[0]}
#
# else:
# model.eval()
# y_true, y_scores = [], []
# for step, batch in enumerate(loader):
# for key in batch.keys():
# batch[key] = batch[key].to(device)
# with torch.no_grad():
# logits = model(**batch)['logits']
# # index = batch['labels'] != id_invalid #mask both text not answer and invalid labels; shape: [batch,answer length]
# if not isinstance(logits, dict): # for generative model
#
# pred=[]
# for i in range(logits.shape[0]):
# ind_valid=batch['labels'][i, :]>0
# pred.append(tokenizer.decode(logits[i,ind_valid,:].argmax(1)))
# pred_number=[]
# for result in pred:
# number_list=re.findall(r"-?\d+\.?\d*e??\d*?",result)
# try:
# decoded_number=eval(number_list[0])
# except:
# decoded_number=float(np.nan)
#
# pred_number.append(decoded_number)
# true=[]
# for i in range(batch['labels'].shape[0]):
# true.append(tokenizer.decode(batch['labels'][i, batch['labels'][i, :]>0]))
# true_number=[]
# for result in true:
# number_list=re.findall(r"-?\d+\.?\d*e??\d*?",result)
# true_number.append(eval((number_list[0])) if len(number_list)>0 else float(np.nan))
#
# else: # for contrastive model, logits is dict
# raise ValueError("Not implemented for dict output!")
#
# y_true+=true_number
# y_scores+=pred_number
#
# y_true = torch.tensor(y_true)
# y_scores = torch.tensor(y_scores)
#
# ind=(~y_scores.isnan())&(y_scores.abs()<reg_thre_by_task(args.dataset))
# # ind = (~y_scores.isnan())
# ratio=ind.float().mean()
# y_true=y_true[ind]
# y_scores=y_scores[ind]
#
# mrs=(y_true-y_scores).std()
# naive_msr=(y_true-y_true.mean()).std()
#
# corrcoef=np.corrcoef(y_true,y_scores)[0,1]
# r2=r2_score(y_true,y_scores)
#
# plt.figure()
# plt.scatter(y_true,y_scores)
# global fig
# plt.savefig('cache/{}fig{}.png'.format(args.dataset,fig))
# fig+=1
#
# print(naive_msr)
#
# return {'ratio':float(ratio),'RMSE':float(mrs),'corrcoef':float(corrcoef),'R-Square':float(r2)}, 0, y_true, y_scores
def main():
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
model_args, data_args, training_args, extra_paras = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args,left = parser.parse_args_into_dataclasses(return_remaining_strings=True)
model_args,graph_args=load_graph_args(model_args,left)
send_example_telemetry("run_mlm", model_args, data_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
raw_datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if extension == "txt":
extension = "text"
raw_datasets = load_dataset(
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
tokenizer_kwargs = {
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
# "do_lower_case": model_args.all_data_to_lower_case,
}
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if model_args.model_name_or_path:
if model_args.transformer_backbone !='':
model=get_model(model_args, graph_args,tokenizer)
else:
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.config_overrides is not None:
logger.info(f"Overriding config: {model_args.config_overrides}")
config.update_from_string(model_args.config_overrides)
logger.info(f"New config: {config}")
model = AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model.resize_token_embeddings(len(tokenizer))
else:
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.config_overrides is not None:
logger.info(f"Overriding config: {model_args.config_overrides}")
config.update_from_string(model_args.config_overrides)
logger.info(f"New config: {config}")
logger.info("Training new model from scratch")
model = AutoModelForMaskedLM.from_config(config)
if training_args.do_train:
column_names = raw_datasets["train"].column_names
else:
column_names = raw_datasets["validation"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
if data_args.max_seq_length is None:
max_seq_length = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
)
max_seq_length = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
if data_args.line_by_line:
# When using line_by_line, we just tokenize each nonempty line.
padding = "max_length" if data_args.pad_to_max_length else False
if model_args.transformer_backbone!='':
tokenize_function=lambda x: graph_text_tokenizer_dict[model_args.transformer_backbone](examples=x, tokenizer=tokenizer, text_column_name=text_column_name, padding=padding, max_seq_length=max_seq_length, rich_features=data_args.rich_features, transform_in_collator=(data_args.transform_in_collator or data_args.wrap_dataset))
else:
def tokenize_function(examples):
# Remove empty lines
examples[text_column_name] = [
line for line in examples[text_column_name] if len(line) > 0 and not line.isspace()
]
return tokenizer(
examples[text_column_name],
padding=padding,
truncation=True,
max_length=max_seq_length,
# We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it
# receives the `special_tokens_mask`.
return_special_tokens_mask=True,
)
# tokenize_function(raw_datasets['train'][0])
if data_args.max_train_samples is not None:
max_train_samples = min(len(raw_datasets['train']), data_args.max_train_samples)
raw_datasets['train'] = raw_datasets['train'].shuffle().select(range(max_train_samples))
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(raw_datasets['validation']), data_args.max_eval_samples)
raw_datasets['validation'] = raw_datasets['validation'].shuffle().select(range(max_eval_samples))
with training_args.main_process_first(desc="dataset map tokenization"):
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=False,
num_proc=data_args.preprocessing_num_workers,
remove_columns=[text_column_name],
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset line_by_line",
)
if data_args.wrap_dataset:
def transform_func(examples):
return graphormer_transform_for_dataset(examples=examples,rich_features=data_args.rich_features)
if training_args.do_train:
tokenized_datasets["train"]=WrapDataset(data=tokenized_datasets["train"],transform=transform_func)
if training_args.do_eval:
tokenized_datasets["validation"] = WrapDataset(data=tokenized_datasets["validation"], transform=transform_func)
else:
def tokenize_function(examples):
return tokenizer(examples[text_column_name], return_special_tokens_mask=True)
with training_args.main_process_first(desc="dataset map tokenization"):
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on every text in dataset",
)
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
if total_length >= max_seq_length:
total_length = (total_length // max_seq_length) * max_seq_length
result = {
k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
for k, t in concatenated_examples.items()
}
return result
with training_args.main_process_first(desc="grouping texts together"):
tokenized_datasets = tokenized_datasets.map(
group_texts,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc=f"Grouping texts in chunks of {max_seq_length}",
)
if training_args.do_train:
if "train" not in tokenized_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = tokenized_datasets["train"]
if training_args.do_eval:
if "validation" not in tokenized_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = tokenized_datasets["validation"]
def preprocess_logits_for_metrics(logits, labels):
if isinstance(logits, tuple):
logits = logits[0]
return logits.argmax(dim=-1)
pad_to_multiple_of_8 = data_args.line_by_line and training_args.fp16 and not data_args.pad_to_max_length
if model_args.transformer_backbone!='':
data_collator = graph_text_collator_dict[model_args.transformer_backbone](
tokenizer=tokenizer,
mlm_probability=data_args.mlm_probability,
pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
transform_in_collator=data_args.transform_in_collator,
rich_features=data_args.rich_features
)
else:
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm_probability=data_args.mlm_probability,
pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
)
# Initialize our Trainer
training_args.remove_unused_columns=False
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
# compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
preprocess_logits_for_metrics=preprocess_logits_for_metrics
if training_args.do_eval and not is_torch_tpu_available()
else None
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
print('last_checkpoint: {}'.format(last_checkpoint))
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
str_y = 'Yes'
str_n = 'No'
label_dict={1:tokenizer.convert_tokens_to_ids(tokenizer.tokenize(str_y)),
0:tokenizer.convert_tokens_to_ids(tokenizer.tokenize(str_n)),
'invalid':[-100]}
metrics = eval_result(trainer.model,trainer.get_eval_dataloader(),label_dict,trainer.tokenizer,'cla',model_args.transformer_backbone)
metrics={'roc_auc': metrics[0]['score']}
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "fill-mask"}
if data_args.dataset_name is not None:
kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:
kwargs["dataset_args"] = data_args.dataset_config_name
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
else:
kwargs["dataset"] = data_args.dataset_name
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()