-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathmetrics.py
212 lines (190 loc) · 8.13 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from collections import defaultdict
from sklearn.metrics import average_precision_score
import numpy as np
def _unique_sample(ids_dict, num):
mask = np.zeros(num, dtype=np.bool)
for _, indices in ids_dict.items():
i = np.random.choice(indices)
mask[i] = True
return mask
def cmc(distmat, query_ids=None, gallery_ids=None,
query_cams=None, gallery_cams=None, topk=100,
separate_camera_set=False,
single_gallery_shot=False,
first_match_break=False):
m, n = distmat.shape
# Fill up default values
if query_ids is None:
query_ids = np.arange(m)
if gallery_ids is None:
gallery_ids = np.arange(n)
if query_cams is None:
query_cams = np.zeros(m).astype(np.int32)
if gallery_cams is None:
gallery_cams = np.ones(n).astype(np.int32)
# Ensure numpy array
query_ids = np.asarray(query_ids)
gallery_ids = np.asarray(gallery_ids)
query_cams = np.asarray(query_cams)
gallery_cams = np.asarray(gallery_cams)
# Sort and find correct matches
indices = np.argsort(distmat, axis=1)
matches = (gallery_ids[indices] == query_ids[:, np.newaxis])
# Compute CMC for each query
ret = np.zeros(topk)
num_valid_queries = 0
for i in range(m):
# Filter out the same id and same camera
valid = ((gallery_ids[indices[i]] != query_ids[i]) |
(gallery_cams[indices[i]] != query_cams[i]))
if separate_camera_set:
# Filter out samples from same camera
valid &= (gallery_cams[indices[i]] != query_cams[i])
if not np.any(matches[i, valid]):
continue
if single_gallery_shot:
repeat = 10
gids = gallery_ids[indices[i][valid]]
inds = np.where(valid)[0]
ids_dict = defaultdict(list)
for j, x in zip(inds, gids):
ids_dict[x].append(j)
else:
repeat = 1
for _ in range(repeat):
if single_gallery_shot:
# Randomly choose one instance for each id
sampled = (valid & _unique_sample(ids_dict, len(valid)))
index = np.nonzero(matches[i, sampled])[0]
else:
index = np.nonzero(matches[i, valid])[0]
delta = 1. / (len(index) * repeat)
for j, k in enumerate(index):
if k - j >= topk:
break
if first_match_break:
ret[k - j] += 1
break
ret[k - j] += delta
num_valid_queries += 1
if num_valid_queries == 0:
raise RuntimeError("No valid query")
return ret.cumsum() / num_valid_queries
def mean_ap(distmat, query_ids=None, gallery_ids=None,
query_cams=None, gallery_cams=None):
m, n = distmat.shape
# Fill up default values
if query_ids is None:
query_ids = np.arange(m)
if gallery_ids is None:
gallery_ids = np.arange(n)
if query_cams is None:
query_cams = np.zeros(m).astype(np.int32)
if gallery_cams is None:
gallery_cams = np.ones(n).astype(np.int32)
# Ensure numpy array
query_ids = np.asarray(query_ids)
gallery_ids = np.asarray(gallery_ids)
query_cams = np.asarray(query_cams)
gallery_cams = np.asarray(gallery_cams)
# Sort and find correct matches
indices = np.argsort(distmat, axis=1)
matches = (gallery_ids[indices] == query_ids[:, np.newaxis])
# Compute AP for each query
aps = []
for i in range(m):
# Filter out the same id and same camera
valid = ((gallery_ids[indices[i]] != query_ids[i]) |
(gallery_cams[indices[i]] != query_cams[i]))
y_true = matches[i, valid]
y_score = -distmat[i][indices[i]][valid]
if not np.any(y_true):
continue
aps.append(average_precision_score(y_true, y_score))
if len(aps) == 0:
raise RuntimeError("No valid query")
return np.mean(aps)
"""
Created on Mon Jun 26 14:46:56 2017
@author: luohao
Modified by Houjing Huang, 2017-12-22.
- This version accepts distance matrix instead of raw features.
- The difference of `/` division between python 2 and 3 is handled.
- numpy.float16 is replaced by numpy.float32 for numerical precision.
Modified by Zhedong Zheng, 2018-1-12.
- replace sort with topK, which save about 30s.
"""
"""
CVPR2017 paper:Zhong Z, Zheng L, Cao D, et al. Re-ranking Person Re-identification with k-reciprocal Encoding[J]. 2017.
url:http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhong_Re-Ranking_Person_Re-Identification_CVPR_2017_paper.pdf
Matlab version: https://github.com/zhunzhong07/person-re-ranking
"""
"""
API
q_g_dist: query-gallery distance matrix, numpy array, shape [num_query, num_gallery]
q_q_dist: query-query distance matrix, numpy array, shape [num_query, num_query]
g_g_dist: gallery-gallery distance matrix, numpy array, shape [num_gallery, num_gallery]
k1, k2, lambda_value: parameters, the original paper is (k1=20, k2=6, lambda_value=0.3)
Returns:
final_dist: re-ranked distance, numpy array, shape [num_query, num_gallery]
"""
def k_reciprocal_neigh(initial_rank, i, k1):
forward_k_neigh_index = initial_rank[i, :k1 + 1]
backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1]
fi = np.where(backward_k_neigh_index == i)[0]
return forward_k_neigh_index[fi]
def re_ranking(q_g_dist, q_q_dist, g_g_dist, k1=20, k2=6, lambda_value=0.3):
# The following naming, e.g. gallery_num, is different from outer scope.
# Don't care about it.
original_dist = np.concatenate(
[np.concatenate([q_q_dist, q_g_dist], axis=1),
np.concatenate([q_g_dist.T, g_g_dist], axis=1)],
axis=0)
original_dist = 2. - 2 * original_dist # np.power(original_dist, 2).astype(np.float32)
original_dist = np.transpose(1. * original_dist / np.max(original_dist, axis=0))
V = np.zeros_like(original_dist).astype(np.float32)
# initial_rank = np.argsort(original_dist).astype(np.int32)
# top K1+1
initial_rank = np.argpartition(original_dist, range(1, k1 + 1))
query_num = q_g_dist.shape[0]
all_num = original_dist.shape[0]
for i in range(all_num):
# k-reciprocal neighbors
k_reciprocal_index = k_reciprocal_neigh(initial_rank, i, k1)
k_reciprocal_expansion_index = k_reciprocal_index
for j in range(len(k_reciprocal_index)):
candidate = k_reciprocal_index[j]
candidate_k_reciprocal_index = k_reciprocal_neigh(initial_rank, candidate, int(np.around(k1 / 2)))
if len(np.intersect1d(candidate_k_reciprocal_index, k_reciprocal_index)) > 2. / 3 * len(
candidate_k_reciprocal_index):
k_reciprocal_expansion_index = np.append(k_reciprocal_expansion_index, candidate_k_reciprocal_index)
k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index)
weight = np.exp(-original_dist[i, k_reciprocal_expansion_index])
V[i, k_reciprocal_expansion_index] = 1. * weight / np.sum(weight)
original_dist = original_dist[:query_num, ]
if k2 != 1:
V_qe = np.zeros_like(V, dtype=np.float32)
for i in range(all_num):
V_qe[i, :] = np.mean(V[initial_rank[i, :k2], :], axis=0)
V = V_qe
del V_qe
del initial_rank
invIndex = []
for i in range(all_num):
invIndex.append(np.where(V[:, i] != 0)[0])
jaccard_dist = np.zeros_like(original_dist, dtype=np.float32)
for i in range(query_num):
temp_min = np.zeros(shape=[1, all_num], dtype=np.float32)
indNonZero = np.where(V[i, :] != 0)[0]
indImages = []
indImages = [invIndex[ind] for ind in indNonZero]
for j in range(len(indNonZero)):
temp_min[0, indImages[j]] = temp_min[0, indImages[j]] + np.minimum(V[i, indNonZero[j]],
V[indImages[j], indNonZero[j]])
jaccard_dist[i] = 1 - temp_min / (2. - temp_min)
final_dist = jaccard_dist * (1 - lambda_value) + original_dist * lambda_value
del original_dist
del V
del jaccard_dist
final_dist = final_dist[:query_num, query_num:]
return final_dist