forked from wyf3/llm_related
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' of https://github.com/wyf3/llm_related
- Loading branch information
Showing
1 changed file
with
134 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
import asyncio | ||
import logging | ||
from contextlib import asynccontextmanager | ||
from typing import List, Optional | ||
from langchain_community.embeddings import OpenVINOBgeEmbeddings | ||
import click | ||
import uvicorn | ||
import tiktoken | ||
from fastapi import FastAPI | ||
from fastapi.responses import JSONResponse, Response | ||
from langchain_community.embeddings import OpenVINOBgeEmbeddings | ||
from pydantic import BaseModel | ||
|
||
encoder = tiktoken.get_encoding("cl100k_base") | ||
|
||
class EmbeddingRequest(BaseModel): | ||
#输入可以是字符串、字符串列表、至于为什么要加上List[List[int]],因为在集成maxkb的过程中发现,其调用向量模型传过来的参数中文字是经过tiktoken编码的。 | ||
input: str|List[str]|List[List[int]] | ||
model: str | ||
|
||
TIMEOUT_KEEP_ALIVE = 5 # seconds. | ||
|
||
class OpenaiServer: | ||
|
||
def __init__(self, | ||
embedding_model_path): | ||
|
||
# 可在此处修改为自己的模型,可以通过任意方式加载(huggingface,langchain,sentence-transformers等), | ||
# 此处为了加速使用了openvino模型,可根据需要自行修改为自己的模型 | ||
self.model = OpenVINOBgeEmbeddings( | ||
model_name_or_path=embedding_model_path, | ||
model_kwargs={"device": "CPU"}, | ||
encode_kwargs={"normalize_embeddings": True}, | ||
) | ||
|
||
@asynccontextmanager | ||
async def lifespan(app: FastAPI): | ||
# terminate rank0 worker | ||
yield | ||
|
||
self.app = FastAPI(lifespan=lifespan) | ||
|
||
|
||
self.register_routes() | ||
def register_routes(self): | ||
self.app.add_api_route("/health", self.health, methods=["GET"]) | ||
self.app.add_api_route("/v1/embeddings", | ||
self.get_embeddings, | ||
methods=["POST"]) | ||
|
||
async def health(self) -> Response: | ||
return Response(status_code=200) | ||
async def get_embeddings(self, request: EmbeddingRequest) -> Response: | ||
|
||
data = [] | ||
if isinstance(request.input, List): | ||
if isinstance(request.input[0], str): | ||
# 修改完模型后,可根据向量模型的具体推理方式修改如下方法 | ||
# 此处为langchain加载的向量模型所使用的推理方法embed_documents和embed_query,分别针对列表和字符串 | ||
# 如使用sentence_transformers,推理方法如下: | ||
# from sentence_transformers import SentenceTransformer | ||
# model = SentenceTransformer("shibing624/text2vec-base-chinese") | ||
# sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡'] | ||
# sentence_embeddings = model.encode(sentences) | ||
|
||
embedding = self.model.embed_documents(request.input) | ||
for i, item in enumerate(embedding): | ||
tmp = { | ||
"object": "embedding", | ||
"embedding": item, | ||
"index": i | ||
} | ||
data.append(tmp) | ||
elif isinstance(request.input[0], List): | ||
# 将tiktoken编码的文本转会文本 | ||
text_list = [encoder.decode(item) for item in request.input] | ||
embedding = self.model.embed_documents(text_list) | ||
for i, item in enumerate(embedding): | ||
tmp = { | ||
"object": "embedding", | ||
"embedding": item, | ||
"index": i | ||
} | ||
data.append(tmp) | ||
else: | ||
# | ||
embedding = self.model.embed_query(request.input) | ||
tmp = { | ||
"object": "embedding", | ||
"embedding": embedding, | ||
"index": 0 | ||
} | ||
data.append(tmp) | ||
|
||
|
||
res = { | ||
"object": "list", | ||
"data": data, | ||
"model": request.model, | ||
"usage": { | ||
"prompt_tokens": 0, | ||
"total_tokens": 0 | ||
} | ||
} | ||
return JSONResponse(content=res) | ||
|
||
async def __call__(self, host, port): | ||
config = uvicorn.Config(self.app, | ||
host=host, | ||
port=port, | ||
log_level="info", | ||
timeout_keep_alive=TIMEOUT_KEEP_ALIVE) | ||
await uvicorn.Server(config).serve() | ||
@click.command() | ||
@click.argument("model_dir") | ||
@click.option("--host", type=str, default=None) | ||
@click.option("--port", type=int, default=8000) | ||
def entrypoint(model_dir, | ||
host: Optional[str] = None, | ||
port: int = 8000): | ||
host = host or "0.0.0.0" | ||
port = port or 8000 | ||
logging.info(f"Starting server at {host}:{port}") | ||
|
||
server = OpenaiServer(embedding_model_path=model_dir) | ||
|
||
asyncio.run(server(host, port)) | ||
|
||
if __name__ == "__main__": | ||
entrypoint() | ||
|
||
|
||
|
||
|