Skip to content

Commit

Permalink
spatial/r3: implement Rotate
Browse files Browse the repository at this point in the history
Updates gonum#1513.
  • Loading branch information
sbinet authored Dec 1, 2020
1 parent 8d1ffe1 commit 9c06200
Show file tree
Hide file tree
Showing 2 changed files with 92 additions and 1 deletion.
58 changes: 57 additions & 1 deletion spatial/r3/vector.go
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,11 @@

package r3

import "math"
import (
"math"

"gonum.org/v1/gonum/num/quat"
)

// Vec is a 3D vector.
type Vec struct {
Expand Down Expand Up @@ -49,6 +53,11 @@ func (p Vec) Cross(q Vec) Vec {
}
}

// Rotate returns a new vector, rotated by alpha around the provided axis.
func (p Vec) Rotate(alpha float64, axis Vec) Vec {
return NewRotation(alpha, axis).Rotate(p)
}

// Norm returns the Euclidean norm of p
// |p| = sqrt(p_x^2 + p_y^2 + p_z^2).
func Norm(p Vec) float64 {
Expand Down Expand Up @@ -79,3 +88,50 @@ func Cos(p, q Vec) float64 {
type Box struct {
Min, Max Vec
}

// TODO: possibly useful additions to the current rotation API:
// - create rotations from Euler angles (NewRotationFromEuler?)
// - create rotations from rotation matrices (NewRotationFromMatrix?)
// - return the equivalent Euler angles from a Rotation
// - return the equivalent rotation matrix from a Rotation
//
// Euler angles have issues (see [1] for a discussion).
// We should think carefully before adding them in.
// [1]: http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/

// Rotation describes a rotation in space.
type Rotation quat.Number

// NewRotation creates a rotation by alpha, around axis.
func NewRotation(alpha float64, axis Vec) Rotation {
if alpha == 0 {
return Rotation{Real: 1}
}
q := raise(axis)
sin, cos := math.Sincos(0.5 * alpha)
q = quat.Scale(sin/quat.Abs(q), q)
q.Real += cos
if len := quat.Abs(q); len != 1 {
q = quat.Scale(1/len, q)
}

return Rotation(q)
}

// Rotate returns the rotated vector according to the definition of rot.
func (r Rotation) Rotate(p Vec) Vec {
if r.isIdentity() {
return p
}
qq := quat.Number(r)
pp := quat.Mul(quat.Mul(qq, raise(p)), quat.Conj(qq))
return Vec{X: pp.Imag, Y: pp.Jmag, Z: pp.Kmag}
}

func (r Rotation) isIdentity() bool {
return r == Rotation{Real: 1}
}

func raise(p Vec) quat.Number {
return quat.Number{Imag: p.X, Jmag: p.Y, Kmag: p.Z}
}
35 changes: 35 additions & 0 deletions spatial/r3/vector_test.go
Original file line number Diff line number Diff line change
Expand Up @@ -236,6 +236,32 @@ func TestCos(t *testing.T) {
}
}

func TestRotate(t *testing.T) {
const tol = 1e-14
for _, test := range []struct {
v, axis Vec
alpha float64
want Vec
}{
{Vec{1, 0, 0}, Vec{1, 0, 0}, math.Pi / 2, Vec{1, 0, 0}},
{Vec{1, 0, 0}, Vec{1, 0, 0}, 0, Vec{1, 0, 0}},
{Vec{1, 0, 0}, Vec{1, 0, 0}, 2 * math.Pi, Vec{1, 0, 0}},
{Vec{1, 0, 0}, Vec{0, 0, 0}, math.Pi / 2, Vec{math.NaN(), math.NaN(), math.NaN()}},
{Vec{1, 0, 0}, Vec{0, 1, 0}, math.Pi / 2, Vec{0, 0, -1}},
{Vec{1, 0, 0}, Vec{0, 1, 0}, math.Pi, Vec{-1, 0, 0}},
{Vec{2, 0, 0}, Vec{0, 1, 0}, math.Pi, Vec{-2, 0, 0}},
{Vec{1, 2, 3}, Vec{1, 1, 1}, 2. / 3. * math.Pi, Vec{3, 1, 2}},
} {
got := test.v.Rotate(test.alpha, test.axis)
if !vecApproxEqual(got, test.want, tol) {
t.Errorf(
"rotate(%v, %v, %v)= %v, want=%v",
test.v, test.alpha, test.axis, got, test.want,
)
}
}
}

func vecIsNaN(v Vec) bool {
return math.IsNaN(v.X) && math.IsNaN(v.Y) && math.IsNaN(v.Z)
}
Expand All @@ -250,3 +276,12 @@ func vecEqual(a, b Vec) bool {
}
return a == b
}

func vecApproxEqual(a, b Vec, tol float64) bool {
if vecIsNaNAny(a) || vecIsNaNAny(b) {
return vecIsNaN(a) && vecIsNaN(b)
}
return scalar.EqualWithinAbs(a.X, b.X, tol) &&
scalar.EqualWithinAbs(a.Y, b.Y, tol) &&
scalar.EqualWithinAbs(a.Z, b.Z, tol)
}

0 comments on commit 9c06200

Please sign in to comment.