forked from gonum/gonum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtriband.go
694 lines (635 loc) · 18.6 KB
/
triband.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
var (
triBand TriBanded
_ Banded = triBand
_ Triangular = triBand
triBandDense *TriBandDense
_ Matrix = triBandDense
_ allMatrix = triBandDense
_ denseMatrix = triBandDense
_ Triangular = triBandDense
_ Banded = triBandDense
_ TriBanded = triBandDense
_ RawTriBander = triBandDense
_ MutableTriBanded = triBandDense
)
// TriBanded is a triangular band matrix interface type.
type TriBanded interface {
Banded
// Triangle returns the number of rows/columns in the matrix and its
// orientation.
Triangle() (n int, kind TriKind)
// TTri is the equivalent of the T() method in the Matrix interface but
// guarantees the transpose is of triangular type.
TTri() Triangular
// TriBand returns the number of rows/columns in the matrix, the
// size of the bandwidth, and the orientation.
TriBand() (n, k int, kind TriKind)
// TTriBand is the equivalent of the T() method in the Matrix interface but
// guarantees the transpose is of banded triangular type.
TTriBand() TriBanded
}
// A RawTriBander can return a blas64.TriangularBand representation of the receiver.
// Changes to the blas64.TriangularBand.Data slice will be reflected in the original
// matrix, changes to the N, K, Stride, Uplo and Diag fields will not.
type RawTriBander interface {
RawTriBand() blas64.TriangularBand
}
// MutableTriBanded is a triangular band matrix interface type that allows
// elements to be altered.
type MutableTriBanded interface {
TriBanded
SetTriBand(i, j int, v float64)
}
var (
tTriBand TransposeTriBand
_ Matrix = tTriBand
_ TriBanded = tTriBand
_ Untransposer = tTriBand
_ UntransposeTrier = tTriBand
_ UntransposeBander = tTriBand
_ UntransposeTriBander = tTriBand
)
// TransposeTriBand is a type for performing an implicit transpose of a TriBanded
// matrix. It implements the TriBanded interface, returning values from the
// transpose of the matrix within.
type TransposeTriBand struct {
TriBanded TriBanded
}
// At returns the value of the element at row i and column j of the transposed
// matrix, that is, row j and column i of the TriBanded field.
func (t TransposeTriBand) At(i, j int) float64 {
return t.TriBanded.At(j, i)
}
// Dims returns the dimensions of the transposed matrix. TriBanded matrices are
// square and thus this is the same size as the original TriBanded.
func (t TransposeTriBand) Dims() (r, c int) {
c, r = t.TriBanded.Dims()
return r, c
}
// T performs an implicit transpose by returning the TriBand field.
func (t TransposeTriBand) T() Matrix {
return t.TriBanded
}
// Triangle returns the number of rows/columns in the matrix and its orientation.
func (t TransposeTriBand) Triangle() (int, TriKind) {
n, upper := t.TriBanded.Triangle()
return n, !upper
}
// TTri performs an implicit transpose by returning the TriBand field.
func (t TransposeTriBand) TTri() Triangular {
return t.TriBanded
}
// Bandwidth returns the upper and lower bandwidths of the matrix.
func (t TransposeTriBand) Bandwidth() (kl, ku int) {
kl, ku = t.TriBanded.Bandwidth()
return ku, kl
}
// TBand performs an implicit transpose by returning the TriBand field.
func (t TransposeTriBand) TBand() Banded {
return t.TriBanded
}
// TriBand returns the number of rows/columns in the matrix, the
// size of the bandwidth, and the orientation.
func (t TransposeTriBand) TriBand() (n, k int, kind TriKind) {
n, k, kind = t.TriBanded.TriBand()
return n, k, !kind
}
// TTriBand performs an implicit transpose by returning the TriBand field.
func (t TransposeTriBand) TTriBand() TriBanded {
return t.TriBanded
}
// Untranspose returns the Triangular field.
func (t TransposeTriBand) Untranspose() Matrix {
return t.TriBanded
}
// UntransposeTri returns the underlying Triangular matrix.
func (t TransposeTriBand) UntransposeTri() Triangular {
return t.TriBanded
}
// UntransposeBand returns the underlying Banded matrix.
func (t TransposeTriBand) UntransposeBand() Banded {
return t.TriBanded
}
// UntransposeTriBand returns the underlying TriBanded matrix.
func (t TransposeTriBand) UntransposeTriBand() TriBanded {
return t.TriBanded
}
// TriBandDense represents a triangular band matrix in dense storage format.
type TriBandDense struct {
mat blas64.TriangularBand
}
// NewTriBandDense creates a new triangular banded matrix with n rows and columns,
// k bands in the direction of the specified kind. If data == nil,
// a new slice is allocated for the backing slice. If len(data) == n*(k+1),
// data is used as the backing slice, and changes to the elements of the returned
// TriBandDense will be reflected in data. If neither of these is true, NewTriBandDense
// will panic. k must be at least zero and less than n, otherwise NewTriBandDense will panic.
//
// The data must be arranged in row-major order constructed by removing the zeros
// from the rows outside the band and aligning the diagonals. For example, if
// the upper-triangular banded matrix
//
// 1 2 3 0 0 0
// 0 4 5 6 0 0
// 0 0 7 8 9 0
// 0 0 0 10 11 12
// 0 0 0 0 13 14
// 0 0 0 0 0 15
//
// becomes (* entries are never accessed)
//
// 1 2 3
// 4 5 6
// 7 8 9
// 10 11 12
// 13 14 *
// 15 * *
//
// which is passed to NewTriBandDense as []float64{1, 2, ..., 15, *, *, *}
// with k=2 and kind = mat.Upper.
// The lower triangular banded matrix
//
// 1 0 0 0 0 0
// 2 3 0 0 0 0
// 4 5 6 0 0 0
// 0 7 8 9 0 0
// 0 0 10 11 12 0
// 0 0 0 13 14 15
//
// becomes (* entries are never accessed)
// - * 1
// - 2 3
// 4 5 6
// 7 8 9
// 10 11 12
// 13 14 15
//
// which is passed to NewTriBandDense as []float64{*, *, *, 1, 2, ..., 15}
// with k=2 and kind = mat.Lower.
// Only the values in the band portion of the matrix are used.
func NewTriBandDense(n, k int, kind TriKind, data []float64) *TriBandDense {
if n <= 0 || k < 0 {
if n == 0 {
panic(ErrZeroLength)
}
panic(ErrNegativeDimension)
}
if k+1 > n {
panic(ErrBandwidth)
}
bc := k + 1
if data != nil && len(data) != n*bc {
panic(ErrShape)
}
if data == nil {
data = make([]float64, n*bc)
}
uplo := blas.Lower
if kind {
uplo = blas.Upper
}
return &TriBandDense{
mat: blas64.TriangularBand{
Uplo: uplo,
Diag: blas.NonUnit,
N: n,
K: k,
Data: data,
Stride: bc,
},
}
}
// Dims returns the number of rows and columns in the matrix.
func (t *TriBandDense) Dims() (r, c int) {
return t.mat.N, t.mat.N
}
// T performs an implicit transpose by returning the receiver inside a Transpose.
func (t *TriBandDense) T() Matrix {
return Transpose{t}
}
// IsEmpty returns whether the receiver is empty. Empty matrices can be the
// receiver for size-restricted operations. The receiver can be emptied using
// Reset.
func (t *TriBandDense) IsEmpty() bool {
// It must be the case that t.Dims() returns
// zeros in this case. See comment in Reset().
return t.mat.Stride == 0
}
// Reset empties the matrix so that it can be reused as the
// receiver of a dimensionally restricted operation.
//
// Reset should not be used when the matrix shares backing data.
// See the Reseter interface for more information.
func (t *TriBandDense) Reset() {
t.mat.N = 0
t.mat.Stride = 0
t.mat.K = 0
t.mat.Data = t.mat.Data[:0]
}
// ReuseAsTriBand changes the receiver to be of size n×n, bandwidth k+1 and of
// the given kind, re-using the backing data slice if it has sufficient capacity
// and allocating a new slice otherwise. The backing data is zero on return.
//
// The receiver must be empty, n must be positive and k must be non-negative and
// less than n, otherwise ReuseAsTriBand will panic. To empty the receiver for
// re-use, Reset should be used.
func (t *TriBandDense) ReuseAsTriBand(n, k int, kind TriKind) {
if n <= 0 || k < 0 {
if n == 0 {
panic(ErrZeroLength)
}
panic(ErrNegativeDimension)
}
if k+1 > n {
panic(ErrBandwidth)
}
if !t.IsEmpty() {
panic(ErrReuseNonEmpty)
}
t.reuseAsZeroed(n, k, kind)
}
// reuseAsZeroed resizes an empty receiver to an n×n triangular band matrix with
// the given bandwidth and orientation. If the receiver is not empty,
// reuseAsZeroed checks that the receiver has the correct size, bandwidth and
// orientation. It then zeros out the matrix data.
func (t *TriBandDense) reuseAsZeroed(n, k int, kind TriKind) {
// reuseAsZeroed must be kept in sync with reuseAsNonZeroed.
if n == 0 {
panic(ErrZeroLength)
}
ul := blas.Lower
if kind == Upper {
ul = blas.Upper
}
if t.IsEmpty() {
t.mat = blas64.TriangularBand{
Uplo: ul,
Diag: blas.NonUnit,
N: n,
K: k,
Data: useZeroed(t.mat.Data, n*(k+1)),
Stride: k + 1,
}
return
}
if t.mat.N != n || t.mat.K != k {
panic(ErrShape)
}
if t.mat.Uplo != ul {
panic(ErrTriangle)
}
t.Zero()
}
// reuseAsNonZeroed resizes an empty receiver to an n×n triangular band matrix
// with the given bandwidth and orientation. If the receiver is not empty,
// reuseAsZeroed checks that the receiver has the correct size, bandwidth and
// orientation.
//
//lint:ignore U1000 This will be used later.
func (t *TriBandDense) reuseAsNonZeroed(n, k int, kind TriKind) {
// reuseAsNonZeroed must be kept in sync with reuseAsZeroed.
if n == 0 {
panic(ErrZeroLength)
}
ul := blas.Lower
if kind == Upper {
ul = blas.Upper
}
if t.IsEmpty() {
t.mat = blas64.TriangularBand{
Uplo: ul,
Diag: blas.NonUnit,
N: n,
K: k,
Data: use(t.mat.Data, n*(k+1)),
Stride: k + 1,
}
return
}
if t.mat.N != n || t.mat.K != k {
panic(ErrShape)
}
if t.mat.Uplo != ul {
panic(ErrTriangle)
}
}
// DoNonZero calls the function fn for each of the non-zero elements of t. The function fn
// takes a row/column index and the element value of t at (i, j).
func (t *TriBandDense) DoNonZero(fn func(i, j int, v float64)) {
if t.isUpper() {
for i := 0; i < t.mat.N; i++ {
for j := i; j < min(i+t.mat.K+1, t.mat.N); j++ {
v := t.at(i, j)
if v != 0 {
fn(i, j, v)
}
}
}
} else {
for i := 0; i < t.mat.N; i++ {
for j := max(0, i-t.mat.K); j <= i; j++ {
v := t.at(i, j)
if v != 0 {
fn(i, j, v)
}
}
}
}
}
// DoRowNonZero calls the function fn for each of the non-zero elements of row i of t. The function fn
// takes a row/column index and the element value of t at (i, j).
func (t *TriBandDense) DoRowNonZero(i int, fn func(i, j int, v float64)) {
if i < 0 || t.mat.N <= i {
panic(ErrRowAccess)
}
if t.isUpper() {
for j := i; j < min(i+t.mat.K+1, t.mat.N); j++ {
v := t.at(i, j)
if v != 0 {
fn(i, j, v)
}
}
} else {
for j := max(0, i-t.mat.K); j <= i; j++ {
v := t.at(i, j)
if v != 0 {
fn(i, j, v)
}
}
}
}
// DoColNonZero calls the function fn for each of the non-zero elements of column j of t. The function fn
// takes a row/column index and the element value of t at (i, j).
func (t *TriBandDense) DoColNonZero(j int, fn func(i, j int, v float64)) {
if j < 0 || t.mat.N <= j {
panic(ErrColAccess)
}
if t.isUpper() {
for i := 0; i < t.mat.N; i++ {
v := t.at(i, j)
if v != 0 {
fn(i, j, v)
}
}
} else {
for i := 0; i < t.mat.N; i++ {
v := t.at(i, j)
if v != 0 {
fn(i, j, v)
}
}
}
}
// Zero sets all of the matrix elements to zero.
func (t *TriBandDense) Zero() {
if t.isUpper() {
for i := 0; i < t.mat.N; i++ {
u := min(1+t.mat.K, t.mat.N-i)
zero(t.mat.Data[i*t.mat.Stride : i*t.mat.Stride+u])
}
return
}
for i := 0; i < t.mat.N; i++ {
l := max(0, t.mat.K-i)
zero(t.mat.Data[i*t.mat.Stride+l : i*t.mat.Stride+t.mat.K+1])
}
}
func (t *TriBandDense) isUpper() bool {
return isUpperUplo(t.mat.Uplo)
}
func (t *TriBandDense) triKind() TriKind {
return TriKind(isUpperUplo(t.mat.Uplo))
}
// Triangle returns the dimension of t and its orientation. The returned
// orientation is only valid when n is not zero.
func (t *TriBandDense) Triangle() (n int, kind TriKind) {
return t.mat.N, t.triKind()
}
// TTri performs an implicit transpose by returning the receiver inside a TransposeTri.
func (t *TriBandDense) TTri() Triangular {
return TransposeTri{t}
}
// Bandwidth returns the upper and lower bandwidths of the matrix.
func (t *TriBandDense) Bandwidth() (kl, ku int) {
if t.isUpper() {
return 0, t.mat.K
}
return t.mat.K, 0
}
// TBand performs an implicit transpose by returning the receiver inside a TransposeBand.
func (t *TriBandDense) TBand() Banded {
return TransposeBand{t}
}
// TriBand returns the number of rows/columns in the matrix, the
// size of the bandwidth, and the orientation.
func (t *TriBandDense) TriBand() (n, k int, kind TriKind) {
return t.mat.N, t.mat.K, TriKind(!t.IsEmpty()) && t.triKind()
}
// TTriBand performs an implicit transpose by returning the receiver inside a TransposeTriBand.
func (t *TriBandDense) TTriBand() TriBanded {
return TransposeTriBand{t}
}
// RawTriBand returns the underlying blas64.TriangularBand used by the receiver.
// Changes to the blas64.TriangularBand.Data slice will be reflected in the original
// matrix, changes to the N, K, Stride, Uplo and Diag fields will not.
func (t *TriBandDense) RawTriBand() blas64.TriangularBand {
return t.mat
}
// SetRawTriBand sets the underlying blas64.TriangularBand used by the receiver.
// Changes to elements in the receiver following the call will be reflected
// in the input.
//
// The supplied TriangularBand must not use blas.Unit storage format.
func (t *TriBandDense) SetRawTriBand(mat blas64.TriangularBand) {
if mat.Diag == blas.Unit {
panic("mat: cannot set TriBand with Unit storage")
}
t.mat = mat
}
// DiagView returns the diagonal as a matrix backed by the original data.
func (t *TriBandDense) DiagView() Diagonal {
if t.mat.Diag == blas.Unit {
panic("mat: cannot take view of Unit diagonal")
}
n := t.mat.N
data := t.mat.Data
if !t.isUpper() {
data = data[t.mat.K:]
}
return &DiagDense{
mat: blas64.Vector{
N: n,
Inc: t.mat.Stride,
Data: data[:(n-1)*t.mat.Stride+1],
},
}
}
// Norm returns the specified norm of the receiver. Valid norms are:
//
// 1 - The maximum absolute column sum
// 2 - The Frobenius norm, the square root of the sum of the squares of the elements
// Inf - The maximum absolute row sum
//
// Norm will panic with ErrNormOrder if an illegal norm is specified and with
// ErrZeroLength if the matrix has zero size.
func (t *TriBandDense) Norm(norm float64) float64 {
if t.IsEmpty() {
panic(ErrZeroLength)
}
lnorm := normLapack(norm, false)
if lnorm == lapack.MaxColumnSum {
work := getFloat64s(t.mat.N, false)
defer putFloat64s(work)
return lapack64.Lantb(lnorm, t.mat, work)
}
return lapack64.Lantb(lnorm, t.mat, nil)
}
// Trace returns the trace of the matrix.
//
// Trace will panic with ErrZeroLength if the matrix has zero size.
func (t *TriBandDense) Trace() float64 {
if t.IsEmpty() {
panic(ErrZeroLength)
}
rb := t.RawTriBand()
var tr float64
var offsetIndex int
if rb.Uplo == blas.Lower {
offsetIndex = rb.K
}
for i := 0; i < rb.N; i++ {
tr += rb.Data[offsetIndex+i*rb.Stride]
}
return tr
}
// SolveTo solves a triangular system T * X = B or Tᵀ * X = B where T is an
// n×n triangular band matrix represented by the receiver and B is a given
// n×nrhs matrix. If T is non-singular, the result will be stored into dst and
// nil will be returned. If T is singular, the contents of dst will be undefined
// and a Condition error will be returned.
func (t *TriBandDense) SolveTo(dst *Dense, trans bool, b Matrix) error {
n, nrhs := b.Dims()
if n != t.mat.N {
panic(ErrShape)
}
dst.reuseAsNonZeroed(n, nrhs)
bU, bTrans := untranspose(b)
if dst == bU {
if bTrans {
work := getDenseWorkspace(n, nrhs, false)
defer putDenseWorkspace(work)
work.Copy(b)
dst.Copy(work)
}
} else {
if rm, ok := bU.(RawMatrixer); ok {
dst.checkOverlap(rm.RawMatrix())
}
dst.Copy(b)
}
var ok bool
if trans {
ok = lapack64.Tbtrs(blas.Trans, t.mat, dst.mat)
} else {
ok = lapack64.Tbtrs(blas.NoTrans, t.mat, dst.mat)
}
if !ok {
return Condition(math.Inf(1))
}
return nil
}
// SolveVecTo solves a triangular system T * x = b or Tᵀ * x = b where T is an
// n×n triangular band matrix represented by the receiver and b is a given
// n-vector. If T is non-singular, the result will be stored into dst and nil
// will be returned. If T is singular, the contents of dst will be undefined and
// a Condition error will be returned.
func (t *TriBandDense) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
n, nrhs := b.Dims()
if n != t.mat.N || nrhs != 1 {
panic(ErrShape)
}
if b, ok := b.(RawVectorer); ok && dst != b {
dst.checkOverlap(b.RawVector())
}
dst.reuseAsNonZeroed(n)
if dst != b {
dst.CopyVec(b)
}
var ok bool
if trans {
ok = lapack64.Tbtrs(blas.Trans, t.mat, dst.asGeneral())
} else {
ok = lapack64.Tbtrs(blas.NoTrans, t.mat, dst.asGeneral())
}
if !ok {
return Condition(math.Inf(1))
}
return nil
}
func copySymBandIntoTriBand(dst *TriBandDense, s SymBanded) {
n, k, upper := dst.TriBand()
ns, ks := s.SymBand()
if n != ns {
panic("mat: triangle size mismatch")
}
if k != ks {
panic("mat: triangle bandwidth mismatch")
}
// TODO(vladimir-ch): implement the missing cases below as needed.
t := dst.mat
sU, _ := untransposeExtract(s)
if sbd, ok := sU.(*SymBandDense); ok {
s := sbd.RawSymBand()
if upper {
if s.Uplo == blas.Upper {
// dst is upper triangular, s is stored in upper triangle.
for i := 0; i < n; i++ {
ilen := min(k+1, n-i)
copy(t.Data[i*t.Stride:i*t.Stride+ilen], s.Data[i*s.Stride:i*s.Stride+ilen])
}
} else {
// dst is upper triangular, s is stored in lower triangle.
//
// The following is a possible implementation for this case but
// is commented out due to lack of test coverage.
// for i := 0; i < n; i++ {
// ilen := min(k+1, n-i)
// for j := 0; j < ilen; j++ {
// t.Data[i*t.Stride+j] = s.Data[(i+j)*s.Stride+k-j]
// }
// }
panic("not implemented")
}
} else {
if s.Uplo == blas.Upper {
// dst is lower triangular, s is stored in upper triangle.
panic("not implemented")
} else {
// dst is lower triangular, s is stored in lower triangle.
panic("not implemented")
}
}
return
}
if upper {
for i := 0; i < n; i++ {
ilen := min(k+1, n-i)
for j := 0; j < ilen; j++ {
t.Data[i*t.Stride+j] = s.At(i, i+j)
}
}
} else {
panic("not implemented")
}
}