forked from gonum/gonum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqr.go
349 lines (314 loc) · 8.99 KB
/
qr.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
const badQR = "mat: invalid QR factorization"
// QR is a type for creating and using the QR factorization of a matrix.
type QR struct {
qr *Dense
q *Dense
tau []float64
cond float64
}
// Dims returns the dimensions of the matrix.
func (qr *QR) Dims() (r, c int) {
if qr.qr == nil {
return 0, 0
}
return qr.qr.Dims()
}
// At returns the element at row i, column j. At will panic if the receiver
// does not contain a successful factorization.
func (qr *QR) At(i, j int) float64 {
if !qr.isValid() {
panic(badQR)
}
m, n := qr.Dims()
if uint(i) >= uint(m) {
panic(ErrRowAccess)
}
if uint(j) >= uint(n) {
panic(ErrColAccess)
}
if qr.q == nil || qr.q.IsEmpty() {
// Calculate Qi, Q i-th row
qi := getFloat64s(m, true)
qr.qRowTo(i, qi)
// Compute QR(i,j)
var val float64
for k := 0; k <= j; k++ {
val += qi[k] * qr.qr.at(k, j)
}
putFloat64s(qi)
return val
}
var val float64
for k := 0; k <= j; k++ {
val += qr.q.at(i, k) * qr.qr.at(k, j)
}
return val
}
// qRowTo extracts the i-th row of the orthonormal matrix Q from a QR
// decomposition.
func (qr *QR) qRowTo(i int, dst []float64) {
c := blas64.General{
Rows: 1,
Cols: len(dst),
Stride: len(dst),
Data: dst,
}
c.Data[i] = 1 // C is the i-th unit vector
// Construct Qi from the elementary reflectors: Qi = C * (H(1) H(2) ... H(nTau))
work := []float64{0}
lapack64.Ormqr(blas.Right, blas.NoTrans, qr.qr.mat, qr.tau, c, work, -1)
work = getFloat64s(int(work[0]), false)
lapack64.Ormqr(blas.Right, blas.NoTrans, qr.qr.mat, qr.tau, c, work, len(work))
putFloat64s(work)
}
// T performs an implicit transpose by returning the receiver inside a
// Transpose.
func (qr *QR) T() Matrix {
return Transpose{qr}
}
func (qr *QR) updateCond(norm lapack.MatrixNorm) {
// Since A = Q*R, and Q is orthogonal, we get for the condition number κ
// κ(A) := |A| |A^-1| = |Q*R| |(Q*R)^-1| = |R| |R^-1 * Qᵀ|
// = |R| |R^-1| = κ(R),
// where we used that fact that Q^-1 = Qᵀ. However, this assumes that
// the matrix norm is invariant under orthogonal transformations which
// is not the case for CondNorm. Hopefully the error is negligible: κ
// is only a qualitative measure anyway.
n := qr.qr.mat.Cols
work := getFloat64s(3*n, false)
iwork := getInts(n, false)
r := qr.qr.asTriDense(n, blas.NonUnit, blas.Upper)
v := lapack64.Trcon(norm, r.mat, work, iwork)
putFloat64s(work)
putInts(iwork)
qr.cond = 1 / v
}
// Factorize computes the QR factorization of an m×n matrix a where m >= n. The QR
// factorization always exists even if A is singular.
//
// The QR decomposition is a factorization of the matrix A such that A = Q * R.
// The matrix Q is an orthonormal m×m matrix, and R is an m×n upper triangular matrix.
// Q and R can be extracted using the QTo and RTo methods.
func (qr *QR) Factorize(a Matrix) {
qr.factorize(a, CondNorm)
}
func (qr *QR) factorize(a Matrix, norm lapack.MatrixNorm) {
m, n := a.Dims()
if m < n {
panic(ErrShape)
}
if qr.qr == nil {
qr.qr = &Dense{}
}
qr.qr.CloneFrom(a)
work := []float64{0}
qr.tau = make([]float64, n)
lapack64.Geqrf(qr.qr.mat, qr.tau, work, -1)
work = getFloat64s(int(work[0]), false)
lapack64.Geqrf(qr.qr.mat, qr.tau, work, len(work))
putFloat64s(work)
qr.updateCond(norm)
if qr.q != nil {
qr.q.Reset()
}
}
func (qr *QR) updateQ() {
m, _ := qr.Dims()
if qr.q == nil {
qr.q = NewDense(m, m, nil)
} else {
qr.q.reuseAsNonZeroed(m, m)
}
// Construct Q from the elementary reflectors.
qr.q.Copy(qr.qr)
work := []float64{0}
lapack64.Orgqr(qr.q.mat, qr.tau, work, -1)
work = getFloat64s(int(work[0]), false)
lapack64.Orgqr(qr.q.mat, qr.tau, work, len(work))
putFloat64s(work)
}
// isValid returns whether the receiver contains a factorization.
func (qr *QR) isValid() bool {
return qr.qr != nil && !qr.qr.IsEmpty()
}
// Cond returns the condition number for the factorized matrix.
// Cond will panic if the receiver does not contain a factorization.
func (qr *QR) Cond() float64 {
if !qr.isValid() {
panic(badQR)
}
return qr.cond
}
// TODO(btracey): Add in the "Reduced" forms for extracting the n×n orthogonal
// and upper triangular matrices.
// RTo extracts the m×n upper trapezoidal matrix from a QR decomposition.
//
// If dst is empty, RTo will resize dst to be r×c. When dst is non-empty,
// RTo will panic if dst is not r×c. RTo will also panic if the receiver
// does not contain a successful factorization.
func (qr *QR) RTo(dst *Dense) {
if !qr.isValid() {
panic(badQR)
}
r, c := qr.qr.Dims()
if dst.IsEmpty() {
dst.ReuseAs(r, c)
} else {
r2, c2 := dst.Dims()
if r != r2 || c != c2 {
panic(ErrShape)
}
}
// Disguise the QR as an upper triangular
t := &TriDense{
mat: blas64.Triangular{
N: c,
Stride: qr.qr.mat.Stride,
Data: qr.qr.mat.Data,
Uplo: blas.Upper,
Diag: blas.NonUnit,
},
cap: qr.qr.capCols,
}
dst.Copy(t)
// Zero below the triangular.
for i := r; i < c; i++ {
zero(dst.mat.Data[i*dst.mat.Stride : i*dst.mat.Stride+c])
}
}
// QTo extracts the r×r orthonormal matrix Q from a QR decomposition.
//
// If dst is empty, QTo will resize dst to be r×r. When dst is non-empty,
// QTo will panic if dst is not r×r. QTo will also panic if the receiver
// does not contain a successful factorization.
func (qr *QR) QTo(dst *Dense) {
if !qr.isValid() {
panic(badQR)
}
r, _ := qr.qr.Dims()
if dst.IsEmpty() {
dst.ReuseAs(r, r)
} else {
r2, c2 := dst.Dims()
if r != r2 || r != c2 {
panic(ErrShape)
}
}
if qr.q == nil || qr.q.IsEmpty() {
qr.updateQ()
}
dst.Copy(qr.q)
}
// SolveTo finds a minimum-norm solution to a system of linear equations defined
// by the matrices A and b, where A is an m×n matrix represented in its QR factorized
// form. If A is singular or near-singular a Condition error is returned.
// See the documentation for Condition for more information.
//
// The minimization problem solved depends on the input parameters.
//
// If trans == false, find X such that ||A*X - B||_2 is minimized.
// If trans == true, find the minimum norm solution of Aᵀ * X = B.
//
// The solution matrix, X, is stored in place into dst.
// SolveTo will panic if the receiver does not contain a factorization.
func (qr *QR) SolveTo(dst *Dense, trans bool, b Matrix) error {
if !qr.isValid() {
panic(badQR)
}
r, c := qr.qr.Dims()
br, bc := b.Dims()
// The QR solve algorithm stores the result in-place into the right hand side.
// The storage for the answer must be large enough to hold both b and x.
// However, this method's receiver must be the size of x. Copy b, and then
// copy the result into m at the end.
if trans {
if c != br {
panic(ErrShape)
}
dst.reuseAsNonZeroed(r, bc)
} else {
if r != br {
panic(ErrShape)
}
dst.reuseAsNonZeroed(c, bc)
}
// Do not need to worry about overlap between m and b because x has its own
// independent storage.
w := getDenseWorkspace(max(r, c), bc, false)
w.Copy(b)
t := qr.qr.asTriDense(qr.qr.mat.Cols, blas.NonUnit, blas.Upper).mat
if trans {
ok := lapack64.Trtrs(blas.Trans, t, w.mat)
if !ok {
return Condition(math.Inf(1))
}
for i := c; i < r; i++ {
zero(w.mat.Data[i*w.mat.Stride : i*w.mat.Stride+bc])
}
work := []float64{0}
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, w.mat, work, -1)
work = getFloat64s(int(work[0]), false)
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, w.mat, work, len(work))
putFloat64s(work)
} else {
work := []float64{0}
lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, w.mat, work, -1)
work = getFloat64s(int(work[0]), false)
lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, w.mat, work, len(work))
putFloat64s(work)
ok := lapack64.Trtrs(blas.NoTrans, t, w.mat)
if !ok {
return Condition(math.Inf(1))
}
}
// X was set above to be the correct size for the result.
dst.Copy(w)
putDenseWorkspace(w)
if qr.cond > ConditionTolerance {
return Condition(qr.cond)
}
return nil
}
// SolveVecTo finds a minimum-norm solution to a system of linear equations,
//
// Ax = b.
//
// See QR.SolveTo for the full documentation.
// SolveVecTo will panic if the receiver does not contain a factorization.
func (qr *QR) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
if !qr.isValid() {
panic(badQR)
}
r, c := qr.qr.Dims()
if _, bc := b.Dims(); bc != 1 {
panic(ErrShape)
}
// The Solve implementation is non-trivial, so rather than duplicate the code,
// instead recast the VecDenses as Dense and call the matrix code.
bm := Matrix(b)
if rv, ok := b.(RawVectorer); ok {
bmat := rv.RawVector()
if dst != b {
dst.checkOverlap(bmat)
}
b := VecDense{mat: bmat}
bm = b.asDense()
}
if trans {
dst.reuseAsNonZeroed(r)
} else {
dst.reuseAsNonZeroed(c)
}
return qr.SolveTo(dst.asDense(), trans, bm)
}