Skip to content
forked from LemuelPuglisi/BrLP

Official implementation of BrLP method from "Enhancing Spatiotemporal Disease Progression Models via Latent Diffusion and Prior Knowledge" from MICCAI 2024

License

Notifications You must be signed in to change notification settings

Andjelaaaa/BrLP

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

brlp

Enhancing Spatiotemporal Disease Progression Models via Latent Diffusion and Prior Knowledge

ArxivInstallationTrainingCite

BrLP-overview-compressed.mp4

Note

🎉 BrLP has been early-accepted at MICCAI 2024 (top 11%)!

Table of Contents

Installation

Download the repository, cd into the project folder and install the brlp package:

pip install -e .

We recommend using a separate environment (see Anaconda). The code has been tested using python 3.9, however we expect it to work also with newer versions.

Data preparation

Check out our document on Data preparation and study reproducibility. This file will guide you in organizing your data and creating the required CSV files to run the training pipelines.

Training

Training BrLP has 3 main phases that will be discribed in the subsequent sections. Every training (except for the auxiliary model) can be monitored using tensorboard as follows:

tensorboard --logdir runs

Train the autoencoder

Follow the commands below to train the autoencoder.

# Create an output and a cache directory
mkdir ae_output ae_cache

# Run the training script
python scripts/training/train_autoencoder.py \
  --dataset_csv /path/to/A.csv \
  --cache_dir   ./ae_cache \
  --output_dir  ./ae_output

Then extract the latents from your MRI data:

python scripts/prepare/extract_latents.py \
  --dataset_csv /path/to/A.csv \
  --aekl_ckpt   ae_output/autoencoder-ep-XXX.pth

Replace XXX to select the autoencoder checkpoints of your choice.

Train the UNet

Follow the commands below to train the diffusion UNet. Replace XXX to select the autoencoder checkpoints of your choice.

# Create an output and a cache directory:
mkdir unet_output unet_cache

# Run the training script
python scripts/training/train_diffusion_unet.py \
  --dataset_csv /path/to/A.csv \
  --cache_dir   unet_cache \
  --output_dir  unet_output \
  --aekl_ckpt   ae_output/autoencoder-ep-XXX.pth

Train the ControlNet

Follow the commands below to train the ControlNet. Replace XXX to select the autoencoder and UNet checkpoints of your choice.

# Create an output and a cache directory:
mkdir cnet_output cnet_cache

# Run the training script
python scripts/training/train_controlnet.py \
  --dataset_csv /path/to/B.csv \
  --cache_dir   unet_cache \
  --output_dir  unet_output \
  --aekl_ckpt   ae_output/autoencoder-ep-XXX.pth \
  --diff_ckpt   unet_output/unet-ep-XXX.pth

Auxiliary models

Follow the commands below to train the DCM auxiliary model.

# Create an output directory
mkdir aux_output

# Run the training script
python scripts/training/train_aux.py \
  --dataset_csv /path/to/A.csv \
  --output_path aux_output

We emphasize that any disease progression model capable of predicting volumetric changes over time is also viable as an auxiliary model for BrLP.

Inference

Our package comes with a brlp command to use BrLP for inference. Check:

brlp --help

The --input parameter requires a CSV file where you list all available data for your subjects. For an example, check to examples/input.example.csv. If you haven't segmented your input scans, brlp can perform this task for you using SynthSeg, but it requires that FreeSurfer >= 7.4 be installed. The --confs parameter specifies the paths to the models and other inference parameters, such as LAS $m$. For an example, check examples/confs.example.yaml.

Running the program looks like this:

inference-preview

Pretrained models

The pretrained models will be published upon acceptance.

Model Weights URL
Autoencoder -
Diffusion Model UNet -
ControlNet -

Acknowledgements

We thank the maintainers of open-source libraries for their contributions to accelerating the research process, with a special mention of MONAI and its GenerativeModels extension.

Citing

Arxiv Preprint:

@article{puglisi2024enhancing,
  title={Enhancing Spatiotemporal Disease Progression Models via Latent Diffusion and Prior Knowledge},
  author={Puglisi, Lemuel and Alexander, Daniel C and Rav{\`\i}, Daniele},
  journal={arXiv preprint arXiv:2405.03328},
  year={2024}
}

MICCAI 2024 proceedings:

Coming soon.

About

Official implementation of BrLP method from "Enhancing Spatiotemporal Disease Progression Models via Latent Diffusion and Prior Knowledge" from MICCAI 2024

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%