Skip to content
forked from THUDM/GATNE

Source code and dataset for KDD 2019 paper "Representation Learning for Attributed Multiplex Heterogeneous Network"

License

Notifications You must be signed in to change notification settings

Aliang-CN/GATNE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GATNE

Representation Learning for Attributed Multiplex Heterogeneous Network.

Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, Jie Tang

Accepted to KDD 2019 Research Track!

Prerequisites

  • Linux or macOS
  • Python 3
  • TensorFlow >= 1.8
  • NVIDIA GPU + CUDA cuDNN

Getting Started

Installation

Clone this repo.

git clone https://github.com/THUDM/GATNE
cd GATNE

Please install dependencies by

pip install -r requirements.txt

Dataset

These datasets are sampled from the original datasets.

  • Amazon contains 10,166 nodes and 148,865 edges. Source
  • Twitter contains 10,000 nodes and 331,899 edges. Source
  • YouTube contains 2,000 nodes and 1,310,617 edges. Source
  • Alibaba contains 6,163 nodes and 17,865 edges.

You can download the preprocessed datasets by running python scripts/download_preprocessed_data.py. (Alibaba dataset is to be released.) If you're in regions where Dropbox are blocked (e.g. Mainland China), try python scripts/download_preprocessed_data.py --cn.

Training

Training on the existing datasets

You can use ./scripts/run_example.sh or python src/main.py --input example_data to train GATNE-T model on the example data. (If you share the server with others or you want to use the specific GPU(s), you may need to set CUDA_VISIBLE_DEVICES.)

If you want to train on the Amazon dataset, you can run python src/main.py --input data/amazon or python src/main.py --input data/amazon --features data/feature.txt to train GATNE-T model or GATNE-I model, respectively.

You can use the following commands to train GATNE-T on Twitter and YouTube datasets. We only evaluate the edges of the first edge type on Twitter dataset as the number of edges of other edge types is too small. python src/main.py --input data/twitter --eval-type 1 python src/main.py --input data/youtube

As Twitter and YouTube datasets do not have node attributes, you can generate heuristic features for them, such as DeepWalk embeddings. Then you can train GATNE-I model on these two datasets by adding the --features argument.

Training on your own datasets

If you want to train GATNE-T/I on your own dataset, you should prepare the following three(or four) files:

  • train.txt: Each line represents an edge, which contains three tokens <edge_type> <node1> <node2> where each token can be either a number or a string.
  • valid.txt: Each line represents an edge or a non-edge, which contains four tokens <edge_type> <node1> <node2> <label>, where <label> is either 1 or 0 denoting an edge or a non-edge
  • test.txt: the same format with valid.txt
  • feature.txt (optional): First line contains two number <num> <dim> representing the number of nodes and the feature dimension size. From the second line, each line describes the features of a node, i.e., <node> <f_1> <f_2> ... <f_dim>.

If your dataset contains several node types and you want to use meta-path based random walk, you should also provide an additional file as follows:

  • node_type.txt: Each line contains two tokens <node> <node_type>, where <node_type> should be consistent with the meta-path schema in the training command, i.e., --schema node_type_1-node_type_2-...-node_type_k-node_type_1. (Note that the first node type in the schema should equals to the last node type.)

If you have ANY difficulties to get things working in the above steps, feel free to open an issue. You can expect a reply within 24 hours.

Cite

Please cite our paper if you find this code useful for your research:

@article{cen2019representation,
  title={Representation Learning for Attributed Multiplex Heterogeneous Network},
  author={Cen, Yukuo and Zou, Xu and Zhang, Jianwei and Yang, Hongxia and Zhou, Jingren and Tang, Jie},
  journal={arXiv preprint arXiv:1905.01669},
  year={2019}
}

About

Source code and dataset for KDD 2019 paper "Representation Learning for Attributed Multiplex Heterogeneous Network"

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.9%
  • Shell 0.1%