ETM-Face is a practical single-stage face detector.
-
Download the annotations provided by RetinaFace(face bounding boxes & five facial landmarks) from baidu cloud or onedrive
-
Organise the WIDERFACE dataset directory under
ETM-Face/data
as follows:
data/widerface/
train/
images/
label.txt
val/
images/
label.txt
test/
images/
label.txt
- Organise the dataset directory under
ETM-Face/fddb
as follows:
fddb/
FDDB-folds/
originalPics/
result1
- Install Pytorch with GPU support.
- Install Deformable Convolution V2 operator from cvpods if you use the DCN based backbone.
- Requirements:
Torch == 1.8.0
Torchvision == 0.9.0
Python == 3.8
NVIDIA GPU == GTX 3090
Linux CUDA ==11.1
Please check train1.py
for training.
-
Download our ETM-Face model baidu cloud (提取码:roy0) trained on WIDER FACE training set to
$ETM-Face_ROOT/weights/
. -
Evaluate the trained model via
./widerface_val.py
on WIDER FACE.
python widerface_val.py [--trained_model [TRAINED_MODEL]] [--save_folder [SAVE_FOLDER]]
[--widerface_root [WIDERFACE_ROOT]]
--trained_model Path to the saved model
--save_folder Path of output widerface resutls
--widerface_root Path of widerface dataset
-
Download the eval_tool to show the WIDERFACE performance.
WiderFace validation mAP: Easy 97.2, Medium 96.5, Hard 91.6.
-
Evaluate the trained model via
./fddb_test.py
on FDDB.
python widerface_test.py [--trained_model [TRAINED_MODEL]] [--split_dir [SPLIT_DIR]]
[--data_dir [DATA_DIR]] [--det_dir [DET_DIR]]
--trained_model Path of the saved model
--split_dir Path of fddb folds
--data_dir Path of fddb all images
--det_dir Path to save fddb results
- Download the evaluation to show the FDDB performance.
https://github.com/Tencent/FaceDetection-DSFD
https://github.com/biubug6/Pytorch_Retinaface
https://github.com/deepinsight/insightface