Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The molecular pathology of cancer

Abstract

Rapid technical advances in DNA sequencing and genome-wide association studies are driving the discovery of the germline and somatic mutations that are present in different cancers. Mutations in genes involved in cellular signaling are common, and often shared by tumors that arise in distinct anatomical locations. Here we review the most important molecular changes in different cancers from the perspective of what should be analyzed on a routine basis in the clinic. The paradigms are EGFR mutations in adenocarcinoma of the lung that can be treated with gefitinib, KRAS mutations in colon cancer with respect to treatment with EGFR antibodies, and the use of gene-expression analysis for ER-positive, node-negative breast cancer patients with respect to chemotherapy options. Several other examples in both solid and hematological cancers are also provided. We focus on how disease subtypes can influence therapy and discuss the implications of the impending molecular diagnostic revolution from the point of view of the patients, clinicians, and the diagnostic and pharmaceutical companies. This paradigm shift is occurring first in cancer patient management and is likely to promote the application of these technologies to other diseases.

Key Points

  • Rapid technical advances in DNA sequencing and other molecular analysis tools are driving the discovery of somatic mutations involved in the development and progression of cancer

  • Many of the same signaling pathways are mutated in different cancers, such as KRAS mutations, which frequently occur in both colon and lung cancer

  • Understanding the mutation profile of individual tumors has allowed the development of tailored treatments, such as EGFR tyrosine kinase inhibitors in lung cancer patients with EGFR mutations

  • Gene-expression profiling is being used to identify patients with tumors that can be treated distinctly; for example, gene-expression arrays can help determine which breast cancer patients would benefit from chemotherapy

  • Molecular profiling is being carried out for most cancers and will lead to a new breed of molecular pathologists in the field of oncology

  • The implications of the molecular pathology revolution are profound for both the cancer patient and the health care system

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EGFR signaling and related pathways.
Figure 2: Important mutated pathways in lung adenocarcinomas.
Figure 3: Germline mutations that confer susceptibility to breast cancer.

Similar content being viewed by others

References

  1. Weinstein, I. B. & Joe, A. Oncogene addiction. Cancer Res. 68, 3077–3080 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Papadopoulos, N., Kinzler, K. W. & Vogelstein, B. The role of companion diagnostics in the development and use of mutation-targeted cancer therapies. Nat. Biotechnol. 24, 985–995 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Mardis, E. R. The impact of next-generation sequencing technology on genetics. Trends Genet. 24, 133–141 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Stratton, M. R., Campbell, P. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Siva, N. 1000 Genomes project. Nat. Biotechnol. 26, 256 (2008).

    Article  PubMed  Google Scholar 

  7. Metzker, M. L. Sequencing technologies—the next generation. Nat. Rev. Genet. 11, 31–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 46 1, 809–813 (2009).

    Article  CAS  Google Scholar 

  9. Pleasance, E. D. et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463, 184–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Pleasance, E. D. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Pushkarev, D., Neff, N. F. & Quake, S. R. Single-molecule sequencing of an individual human genome. Nat. Biotechnol. 27, 847–852 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stratton, M. Genome resequencing and genetic variation. Nat. Biotechnol. 26, 65–66 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Blow, N. Genomics: catch me if you can. Nat. Methods 6, 539–544 (2009).

    Article  CAS  Google Scholar 

  14. Ng, S. B. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461, 272–276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Manolio, T. A., Brooks, L. D. & Collins, F. S. A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest. 118, 1590–1605 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goldstein, D. B. Common genetic variation and human traits. N. Engl. J. Med. 360, 1696–1698 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Hirschorn, J. N. Genome-wide association studies—illuminating biologic pathways. N. Engl. J. Med. 360, 1699–1701 (2009).

    Article  Google Scholar 

  18. Kraft, P. & Hunter, D. J. Genetic risk prediction—are we there yet? N. Engl. J. Med. 360, 1701–1702 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Foulkes, W. D. Inherited susceptibility to common cancers. N. Engl. J. Med. 359, 2143–2153 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. National Cancer Institute BRCA1 and BRCA2: cancer risk and genetic testing [online], (2009).

  21. Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Couzin, F. MicroRNAs make big impression in disease after disease. Science 319, 1782–1784 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Ngo, V. N. et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441, 106–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Lam, L. T. et al. Compensatory IKKα activation of classical NF-κB signaling during IKKβ inhibition identified by an RNA interference sensitization screen. Proc. Natl Acad. Sci. USA 105, 20798–20803 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tyner, J. W. et al. RNAi screen for rapid therapeutic target identification in leukemia patients. Proc. Natl Acad. Sci. USA 106, 8695–8700 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the RAS oncogene. Cell 1 37, 835–848 (2009).

    Article  CAS  Google Scholar 

  28. Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scholl, C. et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 13 7, 821–834 (2009).

    Article  CAS  Google Scholar 

  30. Singh, A. et al. A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell 15, 489–500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herbst, R. S., Heymach, J. V. & Lippman, S. M. Lung cancer. N. Engl. J. Med. 359, 1367–1380 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Amos, C. I. et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat. Genet. 40, 616–622 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hung, R. J. et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452, 633–637 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Thorgeirsson, T. E. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638–642 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shedden, K. et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat. Med. 14, 822–827 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xie, Y. & Minna, J. D. Predicting the future of people with lung cancer. Nat. Med. 14, 812–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu, S. L. et al. MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13, 48–57 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Lebanony, D. et al. Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J. Clin. Oncol. 27, 2030–2037 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Sharma, S. V., Bell, D. W., Settleman, J. & Haber, D. A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 7, 169–181 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenococarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Bean, J. et al. Met amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl Acad. Sci. USA 104, 20932–20937 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Maheswaran, S. et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359, 366–377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Engelman, J. A. & Jänne, P. A. Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin. Cancer Res. 14, 2895–2899 (2008).

    Article  PubMed  Google Scholar 

  45. Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Choi, Y. L. et al. Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res. 68, 4971–4976 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Pfizer at the 45th annual ASCO annual meeting c-MET/ALK inhibitor (PF-02341066) fact sheet [online], (2009).

  48. Mossé, Y. P., Wood, A. & Maris, J. M. Inhibition of ALK signaling for cancer therapy. Clin. Cancer Res. 15, 5609–5614 (2009).

    Article  PubMed  CAS  Google Scholar 

  49. Koivunen, J. P. et al. Mutations in the LKB1 tumour suppressor are frequently found in tumours from Caucasian but not Asian lung cancer patients. Br. J. Cancer 99, 245–252 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shackleford, D. B. & Shaw, R. J. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563–575 (2009).

    Article  CAS  Google Scholar 

  51. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ding, L. et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1074 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jones, S. et al. Comparative lesion sequencing provides insights into tumor evolution. Proc. Natl Acad. Sci. USA 105, 4283–4288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Walther, A. et al. Genetic prognostic and predictive markers in colorectal cancer. Nat. Rev. Cancer 9, 489–499 (2009).

    CAS  PubMed  Google Scholar 

  55. Zanke, B. W. et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat. Genet. 39, 989–994 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Tomlinson, I. P. et al. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosome 10p14 and 8q23.3. Nat. Genet. 40, 623–630 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. O'Connell, M. J. et al. Relationship between tumor gene expression and recurrence in patients with stage II/III colon cancer treated with surgery + 5-FU/LV in NSABP C-06: Consistency of results with two other independent studies [abstract 301]. 2008 Gastrointestinal Cancers Symposium

  58. Garman, K. S. et al. A genomic approach to colon cancer risk stratification yields biological insights into therapeutic opportunities. Proc. Natl Acad. Sci. USA 105, 19432–19437 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Innocenti, F. et al. Comprehensive pharmacogenetic analysis of irinotecan, neutropenia, and pharmacokinetics. J. Clin. Oncol. 27, 2604–2614 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Karapetis, C. S. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 3 59, 1757–1765 (2008).

    Article  Google Scholar 

  61. Messersmith, W. A. & Ahnen, D. J. Targeting the EGFR in colorectal cancer. N. Engl. J. Med. 35 9, 1834–1836 (2008).

    Article  Google Scholar 

  62. Tol, J. et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N. Engl. J. Med. 360, 563–572 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Sartore-Bianchi, A. et al. Multi-determinants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer. PLoS One 4, e7287 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Easton, D. F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stacey, S. N. et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat. Genet. 39, 865–869 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Stacey, S. N. et al. Common variants on 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat. Genet. 40, 703–706 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Ahmed, S. et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat. Genet. 41, 585–590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hunter, D. J. et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet. 39, 870–874 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Thomas, G. et al. A multstage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat. Genet. 41, 579–584 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vazquez, A., Bond, E. E., Levine, A. J. & Bond, G. L. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat. Rev. Drug Discov. 7, 979–987 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Ramaswamy, S. & Perou, C. M. DNA microarrays in breast cancer: the promise of personalised medicine. Lancet 361, 1576–1577 (2003).

    Article  PubMed  Google Scholar 

  73. Sotiriou, C. & Pusztai, L. Gene expression signatures in breast cancer. N. Engl. J. Med. 360, 790–800 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Kummar, S. et al. Phase 0 clinical trial of the poly (ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies. J. Clin. Oncol. 27, 2705–2711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dalla Palma, M. et al. The relative contribution of point mutations and genomic rearrangments in BRCA1 and BRCA2 in high-risk breast cancer families. Cancer Res. 68, 7006–7014 (2008).

    Article  CAS  Google Scholar 

  77. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Inglehart, J. D. & Silver, D. P. Synthetic lethality—a new direction in cancer drug development. N. Engl. J. Med. 361, 189–191 (2009).

    Article  Google Scholar 

  79. Turner, N. C. et al. A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J. 27, 1368–1377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mendes-Pereira, A. M. et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol. Med. 1, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hoskins, J. M., Carey, L. & McLeod, H. L. CYP2D6 and tamoxifen: DNA matters in breast cancer. Nat. Rev. Cancer 9, 576–586 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Dall'Era, M. A. et al. Active surveillance for early-stage prostate cancer: review of current literature. Cancer 112, 1650–1659 (2008).

    Article  PubMed  Google Scholar 

  83. Eeles, R. A. et al. Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nat. Genet. 4 1, 1116–1121 (2009).

    Article  CAS  Google Scholar 

  84. Freie, B. W. & Eisenman, R. N. Ratcheting Myc. Cancer Cell 14, 425–426 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jia, L. et al. Functional enhancers at the gene-poor 8q24 cancer-linked locus. PLoS Genet. 5, e1000597 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Pomerantz, M. M. et al. The 8q24 cancer risk variant rs6983267 shows long range interaction with MYC in colorectal cancer. Nat. Genet. 41, 882–884 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sotelo, J. et al. Long-range enhancers on 8q24 regulate cMyc. Proc. Natl Acad. Sci. USA 107, 3001–3005 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tuupanen, S. et al. The common colorectal cancer predisposition SNP rs698267 at chromosome 8p24 confers potential to enhanced Wnt signaling. Nat. Genet. 41, 885–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Zheng, S. L. et al. Cumulative association of five genetic variants with prostate cancer. N. Engl. J. Med. 35 8, 910–919 (2008).

    Article  Google Scholar 

  90. Eeles, R. A. et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat. Genet. 40, 316–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Thomas, G. et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat. Genet. 40, 310–315 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Lou, H. et al. Fine mapping and functional analysis of a common variant in MSMB on chromosome 10q11.2 associated with prostate cancer susceptibility. Proc. Natl Acad. Sci. USA 106, 7933–7938 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mehra, R. et al. Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer. Cancer Res. 68, 3584–3590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yashimoto, M. et al. Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod. Pathol. 21, 1451–1460 (2008).

    Article  CAS  Google Scholar 

  95. Kumar-Sinha, C., Tomlins, S. A. & Chinnaiyan, A. M. Recurrent gene fusions in prostate cancer. Nat. Rev. Cancer 8, 497–511 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Squire, J. A. TMPRSS2-ERG and PTEN loss in prostate cancer. Nat. Genet. 41, 509–510 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Witte, J. Prostate cancer genomics: towards a new understanding. Nat. Rev. Genet. 10, 77–82 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Meyle, K. D. & Guldberg, P. Genetic risk factors for melanoma. Hum. Genet. 126, 499–510 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Bishop, D. T. et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat. Genet. 41, 920–925 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kashani-Sabet, M. et al. A multi-marker assay to distinguish malignant melanoma from benign nevi. Proc. Natl Acad. Sci. USA 106, 6268–6272 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tsai, J. et al. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl Acad. Sci. USA 105, 3041–3046 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature doi:10.1038/nature08833

    Article  CAS  PubMed  Google Scholar 

  103. Prickett, T. D. et al. Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nat. Genet. 41, 1127–1132 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Curtin, J. A., Busam, K., Pinkel, D. & Bastian, B. C. Somatic activation of KIT in distinct subtypes of melanoma. J. Clin. Oncol. 24, 4340–4346 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Khan, J. et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7, 673–679 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Taylor, J. G. et al. FGFR4 is a mutationally activated oncogene that promotes metastasis in rhabdomyosarcoma. J. Clin. Invest. 119, 3395–3406 (2009).

    CAS  PubMed  Google Scholar 

  107. Capasso, M. et al. Common variants in BARD1 influence susceptibility to high risk neuroblastoma. Nat. Genet. 41, 718–723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wei, J. S. et al. Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Cancer Res. 64, 6883–6891 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ohira, M. et al. Expression profiling using a tumor-specific cDNA microarray predicts the prognosis of intermediate risk neuroblastomas. Cancer Cell 7, 337–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Schramm, A. et al. Prediction of clinical outcome and biological characterization of neuroblastoma by expression profiling. Oncogene 24, 7902–7912 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Asgharzadeh, S. et al. Prognostic significance of gene expression profiles of metastatic neuroblastomas lacking MYCN gene amplification. J. Natl Cancer Inst. 98, 1193–1203 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Oberthuer, A. et al. Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J. Clin. Oncol. 24, 5070–5078 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Chen, Y. et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455, 971–974 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. George, R. E. et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455, 975–978 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Janoueix-Lerosy, I. et al. Somatic and germline mutations of the ALK kinase receptor in neuroblastoma. Nature 455, 967–970 (2008).

    Article  CAS  Google Scholar 

  116. Chiarle, R., Voena, C., Ambrogio, C., Piva, R. & Inghirami, G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat. Rev. Cancer 8, 11–23 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Hummel, M. et al. A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling. N. Engl. J. Med. 354, 2419–2430 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Dave, S. S. et al. Molecular diagnosis of Burkitt's lymphoma. N. Engl. J. Med. 354, 2431–2442 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Staudt, L. M. & Dave, S. The biology of human lymphoid malignancies revealed by gene expression profiling. Adv. Immunol. 87, 163–208 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dunleavy, K. et al. Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma. Blood 113, 6069–6076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lenz, G. et al. Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med. 359, 2313–2323 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Lenz, G. et al. Oncogenic CARD 11 mutations in human diffuse large B cell lymphoma. Science 319, 1676–1679 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-κB in diffuse large B cell lymphoma. Nature 459, 717–722 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kato, M. et al. Frequent inactivation of A20 in B-cell lymphomas. Nature 459, 712–716 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Baud, V. & Karin, M. Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat. Rev. Drug Discov. 8, 33–40 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Soucy, T. A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732–736 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Staudt, L. M. Molecular diagnosis of hematologic cancers. N. Engl. J. Med. 348, 1777–1785 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Lydon, N. Attacking cancer at its foundation. Nat. Med. 15, 1153–1157 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Shah, N. P. et al. Sequential ABL kinase inhibitor therapy selects for compound drug-resistant BCR-ABL mutations with altered oncogenic potency. J. Clin. Invest. 117, 2562–2569 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang, J., Yang, P. L. & Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 9, 28–39 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. O'Hare, T. et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 16, 401–412 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Meshinchi, S. & Appelbaum, F. R. Structural and functional alterations of FLT3 in acute myeloid leukemia. Clin. Cancer Res. 1 5, 4263–4269 (2009).

    Article  CAS  Google Scholar 

  133. Fröhling, S. et al. Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles. Cancer Cell 12, 501–513 (2007).

    Article  PubMed  CAS  Google Scholar 

  134. Payton, J. E. et al. High throughput digital quantification of mRNA abundance in primary human acute myeloid leukemia samples. J. Clin. Invest. 1 19, 1714–1726 (2009).

    Article  CAS  Google Scholar 

  135. Radtke, I. et al. Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia. Proc. Natl Acad. Sci. USA 106, 12944–12949 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ley, T. J. et al. DNA sequencing of a cytogenetically normal acute myeloid leukemia genome. Nature 456, 66–72 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mardis, E. R. et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 10, 1058–1066 (2009).

    Article  Google Scholar 

  138. Mullighan, C. G. et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 32 2, 1377–1380 (2008).

    Article  CAS  Google Scholar 

  139. Yang, J. J. et al. Genome-wide interrogation of germline genetic variation associated with treatment response in childhood acute lymphoblastoic leukemia. JAMA 301, 393–403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mullighan, C. G. et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 360, 470–480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Papaemmanuil, E. et al. Loci on 7p12.2 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat. Genet. 41, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Morgan, K. J. & Gilliland, D. G. A role for Jak2 mutations in myeloproliferative diseases. Annu. Rev. Med. 59, 213–222 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Delhommeau, F. et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360, 2289–2301 (2009).

    Article  PubMed  Google Scholar 

  144. Verstovsek, S. Therapeutic potential of JAK2 inhibitors. Hematology Am. Soc. Hematol. Educ. Program 636–642 (2009).

    Article  Google Scholar 

  145. Wiestner, A. et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome and distinct gene expression profile. Blood 101, 4944–4951 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Rassenti, L. Z. et al. Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia. Blood 112, 1923–1930 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Iorio, M. V & Croce, C. M. MicroRNAs in cancer: small molecules with a huge impact. J. Clin. Oncol. 27, 5848–5856 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Croce, C. M. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 10, 704–714 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pao, W. et al. Integration of molecular profiling into the lung cancer clinic. Clin. Cancer Res. 15, 5317–5322 (2009).

    Article  PubMed  Google Scholar 

  150. Engelman, J. A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 9, 550–562 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Liu, P. et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 8, 627–644 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Jha, A. K. et al. Use of electronic health records in US hospitals. N. Engl. J. Med. 360, 1628–1638 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Steinbrook, R. Personally controlled online health data—the next big thing in medical care? N. Engl. J. Med. 358, 1653–1656 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Sawyers, C. L. The cancer biomarker problem. Nature 452, 548–552 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Aspinall, M. G. & Hamermesh, R. G. Realizing the promise of personalized medicine. Harv. Bus. Rev. 85, 108–117 (2007).

    PubMed  Google Scholar 

  156. Ioannidis, J. P., Thomas, G. & Daly, M. J. Validating, augmenting and refining genome-wide association signals. Nat. Rev. Genet. 1 0, 318–329 (2009).

    Article  CAS  Google Scholar 

  157. Nusbaum, C. et al. DNA sequence and analysis of human chromosome 8. Nature 4 39, 331–335 (2006).

    Article  CAS  Google Scholar 

  158. Wang, J. et al. The diploid genome sequence of an Asian individual. Nature 456, 60–65 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. The 1000 Genomes Project 1000 Genomes—a deep catalog of human genetic variation [online], (2010).

  160. Kim, J. I. et al. A highly annotated whole genome sequence of a Korean individual. Nature 460, 1011–1016 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yeager, M. et al. Comprehensive resequence analysis of a 136 kb region of human chromosome 8q24 associated with prostate and colon cancers. Hum. Genet. 124, 161–170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Dolgin, E. Human genomics: The genome finishers. Nature 462, 843–845 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Pharaoh, P. D., Antoniou, A. C., Easton, D. F. & Ponder, B. A. Polygenes, risk prediction and targeted prevention of breast cancer. N. Engl. J. Med. 358, 2796–2803 (2008).

    Article  Google Scholar 

  164. GenomeWeb Scripps starts genomics study of breast cancer variants [online], (2009).

  165. Ng, P. C., Murray, S. S., Levy, S. & Venter, J. C. An agenda for personalized medicine. Nature 461, 724–726 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Vineis, P., Schulte, P. & McMichael, A. J. Misconceptions about the use of genetic tests in populations. Lancet 357, 709–712 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs Javed Khan, David Munroe, Bob Stephens, Lou Staudt, Snorri Thorgeirsson and Mickey Williams for providing information and for helpful comments on the manuscript. The authors would like to apologize for not including references to some of the original work cited herein. This was for space limitation reasons only. This project has been funded in whole or in part with federal funds from the National Cancer Institute and National Institutes of Health (contract number HHSN261200800001E). The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. R. Harris.

Ethics declarations

Competing interests

T. J. R. Harris has worked as a consultant for Bionomics and BG Medicine, and is also a director of BG Medicine. F. McCormick is a director of Exelixis. He is also a director of Onyx and has worked as a consultant for this company. F. McCormick has also received research support from Daiichi Sankyo.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, T., McCormick, F. The molecular pathology of cancer. Nat Rev Clin Oncol 7, 251–265 (2010). https://doi.org/10.1038/nrclinonc.2010.41

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.41

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer