Possible Role of Pineal and Extra-Pineal Melatonin in Surveillance, Immunity, and First-Line Defense
Abstract
:1. Introduction
2. The Immune–Pineal Axis
2.1. Discovery
2.2. Pineal and Extra-Pineal Orchestrated Melatonin Synthesis
2.3. Molecular Mechanisms Involved in the Activation of the Immune–Pineal Axis
3. Melatonin as a First-Line Defense in Organs Exposed to the Environment
3.1. Skin
3.2. Gastrointestinal Tract
3.3. Respiratory Tract
3.4. Tissue-Resident Macrophages as a First Defense Line
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Cannon, W.B. Bodily Changes in Pain, Hunger, Fear and Rage: An Account of Recent Researches into the Function of Emotional Excitement; D Appleton & Company: New York, NY, USA, 1915. [Google Scholar] [CrossRef]
- Lopes, C.; deLyra, J.L.; Markus, R.P.; Mariano, M. Circadian Rhythm in Experimental Granulomatous Inflammation Is Modulated by Melatonin. J. Pineal Res. 1997, 23, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.W.; Churchill, R.V. Fourier Series and Boundary Value Problems, 8th ed.; McGraw-Hill: New York, NY, USA, 2012. [Google Scholar]
- Lotufo, C.M.; Lopes, C.; Dubocovich, M.L.; Farsky, S.H.; Markus, R.P. Melatonin and N-Acetylserotonin Inhibit Leukocyte Rolling and Adhesion to Rat Microcirculation. Eur. J. Pharmacol. 2001, 430, 351–357. [Google Scholar] [CrossRef]
- Markus, R.P.; Fernandes, P.A.; Kinker, G.S.; da Silveira Cruz-Machado, S.; Marçola, M. Immune-Pineal Axis—Acute Inflammatory Responses Coordinate Melatonin Synthesis by Pinealocytes and Phagocytes. Br. J. Pharmacol. 2018, 175, 3239–3250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiter, R.J. Antioxidant Actions of Melatonin. In Advances in Pharmacology; Elsevier: Amsterdam, The Netherlands, 1996; Volume 38, pp. 103–117. [Google Scholar] [CrossRef]
- Reiter, R.J.; Tan, D.X.; Qi, W.; Manchester, L.C.; Karbownik, M.; Calvo, J.R. Pharmacology and Physiology of Melatonin in the Reduction of Oxidative Stress In Vivo. Biol. Signals Recept. 2000, 9, 160–171. [Google Scholar] [CrossRef]
- Pertsov, S.S. Role of the Hypothalamic Suprachiasmatic Nucleus in the Effect of Melatonin on the Thymus, Adrenal Glands, and Spleen in Rats. Bull. Exp. Biol. Med. 2006, 141, 383–386. [Google Scholar] [CrossRef] [PubMed]
- Lopes, C.; Mariano, M.; Markus, R.P. Interaction between the Adrenal and the Pineal Gland in Chronic Experimental Inflammation Induced by BCG in Mice. Inflamm. Res. 2001, 50, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Vico, A.; Lardone, P.; Álvarez-Sánchez, N.; Rodríguez-Rodríguez, A.; Guerrero, J. Melatonin: Buffering the Immune System. Int. J. Mol. Sci. 2013, 14, 8638–8683. [Google Scholar] [CrossRef] [Green Version]
- Stanford, S.C. Recent Developments in Research of Melatonin and Its Potential Therapeutic Applications. Br. J. Pharmacol. 2018, 175, 3187–3189. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.A.C.M.; Cecon, E.; Markus, R.P.; Ferreira, Z.S. Effect of TNF-Alpha on the Melatonin Synthetic Pathway in the Rat Pineal Gland: Basis for a “feedback” of the Immune Response on Circadian Timing. J. Pineal Res. 2006, 41, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Da Silveira Cruz-Machado, S.; Carvalho-Sousa, C.E.; Tamura, E.K.; Pinato, L.; Cecon, E.; Fernandes, P.A.C.M.; de Avellar, M.C.W.; Ferreira, Z.S.; Markus, R.P. TLR4 and CD14 Receptors Expressed in Rat Pineal Gland Trigger NFKB Pathway. J. Pineal Res. 2010, 49, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Da Silveira Cruz-Machado, S.; Pinato, L.; Tamura, E.K.; Carvalho-Sousa, C.E.; Markus, R.P. Glia-Pinealocyte Network: The Paracrine Modulation of Melatonin Synthesis by Tumor Necrosis Factor (TNF). PLoS ONE 2012, 7, e40142. [Google Scholar] [CrossRef] [PubMed]
- Markus, R.P.; Ferreira, Z.S.; Fernandes, P.A.C.M.; Cecon, E. The Immune-Pineal Axis: A Shuttle between Endocrine and Paracrine Melatonin Sources. Neuroimmunomodulation 2007, 14, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Carvalho-Sousa, C.E.; da Silveira Cruz-Machado, S.; Tamura, E.K.; Fernandes, P.A.C.M.; Pinato, L.; Muxel, S.M.; Cecon, E.; Markus, R.P. Molecular Basis for Defining the Pineal Gland and Pinealocytes as Targets for Tumor Necrosis Factor. Front. Endocrinol. 2011, 2, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silveira Cruz-Machado, S.; Tamura, E.K.; Carvalho-Sousa, C.E.; Rocha, V.A.; Pinato, L.; Fernandes, P.A.C.; Markus, R.P. Daily Corticosterone Rhythm Modulates Pineal Function through NFκB-Related Gene Transcriptional Program. Sci. Rep. 2017, 7, 2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang-Shieh, Y.F.; Wu, C.H.; Chien, H.F.; Wei, I.H.; Chang, M.L.; Shieh, J.Y.; Wen, C.Y. Reactive Changes of Interstitial Glia and Pinealocytes in the Rat Pineal Gland Challenged with Cell Wall Components from Gram-Positive and -Negative Bacteria. J. Pineal Res. 2005, 38, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Nunnari, G.; Nigro, L.; Palermo, F.; Leto, D.; Pomerantz, R.J.; Cacopardo, B. Reduction of Serum Melatonin Levelsin HIV-1-Infected Individuals’ Parallel Disease Progression:Correlation with Serum Interleukin-12 Levels. Infection 2003, 31, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Cecon, E.; Chen, M.; Marçola, M.; Fernandes, P.A.C.; Jockers, R.; Markus, R.P. Amyloid β Peptide Directly Impairs Pineal Gland Melatonin Synthesis and Melatonin Receptor Signaling through the ERK Pathway. FASEB J. 2015, 29, 2566–2582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinato, L.; da Silveira Cruz-Machado, S.; Franco, D.G.; Campos, L.M.G.; Cecon, E.; Fernandes, P.A.C.M.; Bittencourt, J.C.; Markus, R.P. Selective Protection of the Cerebellum against Intracerebroventricular LPS Is Mediated by Local Melatonin Synthesis. Brain Struct. Funct. 2015, 220, 827–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho-Sousa, C.E.; Pereira, E.P.; Kinker, G.S.; Veras, M.; Ferreira, Z.S.; Barbosa-Nunes, F.P.; Martins, J.O.; Saldiva, P.H.N.; Reiter, R.J.; Fernandes, P.A.; et al. Immune-Pineal Axis Protects Rat Lungs Exposed to Polluted Air. J. Pineal Res. 2020, 68, e12636. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, R.K.; Lal, M.K.; Kumar, R.; Chourasia, K.N.; Naga, K.C.; Kumar, D.; Das, S.K.; Zinta, G. Mechanistic Insights on Melatonin-mediated Drought Stress Mitigation in Plants. Physiol. Plant. 2021, 172, 1212–1226. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.-X.; Hardeland, R.; Back, K.; Manchester, L.C.; Alatorre-Jimenez, M.A.; Reiter, R.J. On the Significance of an Alternate Pathway of Melatonin Synthesis via 5-Methoxytryptamine: Comparisons across Species. J. Pineal Res. 2016, 61, 27–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szewczuk, L.M.; Tarrant, M.K.; Sample, V.; Drury, W.J.; Zhang, J.; Cole, P.A. Analysis of Serotonin N -Acetyltransferase Regulation in Vitro and in Live Cells Using Protein Semisynthesis. Biochemistry 2008, 47, 10407–10419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mechanisms Regulating Melatonin Synthesis in the Mammalian Pineal Organ—SCHOMERUS—2005—Annals of the New York Academy of Sciences—Wiley Online Library. Available online: https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1196/annals.1356.028 (accessed on 18 August 2021).
- Borjigin, J.; Liu, T. Application of Long-Term Microdialysis in Circadian Rhythm Research. Pharmacol. Biochem. Behav. 2008, 90, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Bastos, P.R.O.; Titon, S.C.M.; Titon Junior, B.; Gomes, F.R.; Markus, R.P.; Ferreira, Z.S. Daily and LPS-Induced Variation of Endocrine Mediators in Cururu Toads (Rhinella icterica). Chronobiol. Int. 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pontes, G.N.; Cardoso, E.C.; Carneiro-Sampaio, M.M.S.; Markus, R.P. Pineal Melatonin and the Innate Immune Response: The TNF-Alpha Increase after Cesarean Section Suppresses Nocturnal Melatonin Production. J. Pineal Res. 2007, 43, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Pires-Lapa, M.A.; Carvalho-Sousa, C.E.; Cecon, E.; Fernandes, P.A.; Markus, R.P. β-Adrenoceptors Trigger Melatonin Synthesis in Phagocytes. Int. J. Mol. Sci. 2018, 19, 2182. [Google Scholar] [CrossRef] [Green Version]
- Skwarlo-Sonta, K.; Majewski, P.; Markowska, M.; Oblap, R.; Olszanska, B. Bidirectional Communication between the Pineal Gland and the Immune System. Can. J. Physiol Pharmacol. 2003, 81, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Piesiewicz, A.; Kedzierska, U.; Adamska, I.; Usarek, M.; Zeman, M.; Skwarlo-Sonta, K.; Majewski, P.M. Pineal Arylalkylamine N-Acetyltransferase (Aanat) Gene Expression as a Target of Inflammatory Mediators in the Chicken. Gen. Comp. Endocrinol. 2012, 179, 143–151. [Google Scholar] [CrossRef]
- Herman, A.P.; Bochenek, J.; Król, K.; Krawczyńska, A.; Antushevich, H.; Pawlina, B.; Herman, A.; Romanowicz, K.; Tomaszewska-Zaremba, D. Central Interleukin-1β Suppresses the Nocturnal Secretion of Melatonin. Mediat. Inflamm. 2016, 2016, 2589483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herman, A.P.; Bochenek, J.; Skipor, J.; Król, K.; Krawczyńska, A.; Antushevich, H.; Pawlina, B.; Marciniak, E.; Tomaszewska-Zaremba, D. Interleukin-1 β Modulates Melatonin Secretion in Ovine Pineal Gland: Ex Vivo Study. Biomed. Res. Int. 2015, 2015, 526464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontes, G.N.; Cardoso, E.C.; Carneiro-Sampaio, M.M.S.; Markus, R.P. Injury Switches Melatonin Production Source from Endocrine (Pineal) to Paracrine (Phagocytes)—Melatonin in Human Colostrum and Colostrum Phagocytes. J. Pineal Res. 2006, 41, 136–141. [Google Scholar] [CrossRef]
- Da Silveira Cruz-Machado, S.; Guissoni Campos, L.M.; Fadini, C.C.; Anderson, G.; Markus, R.P.; Pinato, L. Disrupted Nocturnal Melatonin in Autism: Association with Tumor Necrosis Factor and Sleep Disturbances. J. Pineal Res. 2021, e12715. [Google Scholar] [CrossRef]
- Pires-Lapa, M.A.; Tamura, E.K.; Salustiano, E.M.A.; Markus, R.P. Melatonin Synthesis in Human Colostrum Mononuclear Cells Enhances Dectin-1-Mediated Phagocytosis by Mononuclear Cells. J. Pineal Res. 2013, 55, 240–246. [Google Scholar] [CrossRef]
- Zmijewski, M.A.; Sweatman, T.W.; Slominski, A.T. The Melatonin-Producing System Is Fully Functional in Retinal Pigment Epithelium (ARPE-19). Mol. Cell Endocrinol. 2009, 307, 211–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, P.A.; Kinker, G.S.; Navarro, B.V.; Jardim, V.C.; Ribeiro-Paz, E.D.; Córdoba-Moreno, M.O.; Santos-Silva, D.; Muxel, S.M.; Fujita, A.; Moraes, C.B.; et al. Melatonin-Index as a Biomarker for Predicting the Distribution of Presymptomatic and Asymptomatic SARS-CoV-2 Carriers. Melatonin Res. 2021, 4, 189–205. [Google Scholar] [CrossRef]
- Sagrillo-Fagundes, L.; Assunção Salustiano, E.M.; Ruano, R.; Markus, R.P.; Vaillancourt, C. Melatonin Modulates Autophagy and Inflammation Protecting Human Placental Trophoblast from Hypoxia/Reoxygenation. J. Pineal Res. 2018, 65, e12520. [Google Scholar] [CrossRef]
- Kinker, G.S.; Oba-Shinjo, S.M.; Carvalho-Sousa, C.E.; Muxel, S.M.; Marie, S.K.N.; Markus, R.P.; Fernandes, P.A. Melatonergic System-Based Two-Gene Index Is Prognostic in Human Gliomas. J. Pineal Res. 2016, 60, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.-W.; Zheng, Z.-Q.; Wang, Z.-X.; Zhou, G.-Q.; Chen, L.; Mao, Y.-P.; Lin, A.-H.; Reiter, R.J.; Ma, J.; Chen, Y.-P.; et al. Pan-Cancer Genomic Analyses Reveal Prognostic and Immunogenic Features of the Tumor Melatonergic Microenvironment across 14 Solid Cancer Types. J. Pineal Res. 2019, 66, e12557. [Google Scholar] [CrossRef]
- De Castro, T.B.; Bordin-Junior, N.A.; de Almeida, E.A.; de Campos Zuccari, D.A.P. Evaluation of Melatonin and AFMK Levels in Women with Breast Cancer. Endocrine 2018, 62, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Hayden, M.S.; Ghosh, S. Signaling to NF-KappaB. Genes Dev. 2004, 18, 2195–2224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, N.-H. Naturally Occurring NF-KappaB Inhibitors. Mini Rev. Med. Chem. 2006, 6, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.-I.; Kil, S.-H.; Pan, H.; Lee, Y.J.; Lim, D.J.; Moon, S.K. Distal NF-KB Binding Motif Functions as an Enhancer for Nontypeable H. Influenzae-Induced DEFB4 Regulation in Epithelial Cells. Biochem. Biophys. Res. Commun. 2014, 443, 1035–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muxel, S.M.; Pires-Lapa, M.A.; Monteiro, A.W.A.; Cecon, E.; Tamura, E.K.; Floeter-Winter, L.M.; Markus, R.P. NF-ΚB Drives the Synthesis of Melatonin in RAW 264.7 Macrophages by Inducing the Transcription of the Arylalkylamine-N-Acetyltransferase (AA-NAT) Gene. PLoS ONE 2012, 7, e52010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardo, C.A.; Martin, L.J.; Troncoso, J.C.; Price, D.L. The Human Pineal Gland in Aging and Alzheimer’s Disease: Patterns of Cytoskeletal Antigen Immunoreactivity. Acta Neuropathol. 1990, 80, 535–540. [Google Scholar] [CrossRef]
- Zhou, J.-N.; Liu, R.-Y.; Kamphorst, W.; Hofman, M.A.; Swaab, D.F. Early Neuropathological Alzheimer’s Changes in Aged Individuals Are Accompanied by Decreased Cerebrospinal Fluid Melatonin Levels: AD Neuropathological Changes and Melatonin. J. Pineal Res. 2003, 35, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Mortani Barbosa, E.J.; Ferreira, Z.S.; Markus, R.P. Purinergic and Noradrenergic Cotransmission in the Rat Pineal Gland. Eur. J. Pharmacol. 2000, 401, 59–62. [Google Scholar] [CrossRef]
- Ferreira, Z.S.; Markus, R.P. Characterisation of P2Y1-like Receptor in Cultured Rat Pineal Glands. Eur. J. Pharmacol. 2001, 415, 151–156. [Google Scholar] [CrossRef]
- Burnstock, G. P2X Ion Channel Receptors and Inflammation. Purinergic Signal. 2016, 12, 59–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza-Teodoro, L.H.; Dargenio-Garcia, L.; Petrilli-Lapa, C.L.; da Souza, E.S.; Fernandes, P.A.C.M.; Markus, R.P.; Ferreira, Z.S. Adenosine Triphosphate Inhibits Melatonin Synthesis in the Rat Pineal Gland. J. Pineal Res. 2016, 60, 242–249. [Google Scholar] [CrossRef]
- Tosini, G.; Ye, K.; Iuvone, P.M. N -Acetylserotonin: Neuroprotection, Neurogenesis, and the Sleepy Brain. Neuroscientist 2012, 18, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Slominski, A.; Tobin, D.J.; Zmijewski, M.A.; Wortsman, J.; Paus, R. Melatonin in the Skin: Synthesis, Metabolism and Functions. Trends Endocrinol. Metab. 2008, 19, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Bubenik, G.A. Localization, Physiological Significance and Possible Clinical Implication of Gastrointestinal Melatonin. Neurosignals 2001, 10, 350–366. [Google Scholar] [CrossRef]
- Kim, T.; Kleszczyński, K.; Janjetovic, Z.; Sweatman, T.; Lin, Z.; Li, W.; Reiter, R.J.; Fischer, T.W.; Slominski, A.T. Metabolism of Melatonin and Biological Activity of Intermediates of Melatoninergic Pathway in Human Skin Cells. FASEB J. 2013, 27, 2742–2755. [Google Scholar] [CrossRef] [PubMed]
- Semak, I.; Korik, E.; Antonova, M.; Wortsman, J.; Slominski, A. Metabolism of Melatonin by Cytochrome P450s in Rat Liver Mitochondria and Microsomes. J. Pineal Res. 2008, 45, 515–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, T.W.; Sweatman, T.W.; Semak, I.; Sayre, R.M.; Wortsman, J.; Slominski, A.; Fischer, T.W.; Sweatman, T.W.; Semak, I.; Sayre, R.M.; et al. Constitutive and UV-induced Metabolism of Melatonin in Keratinocytes and Cell-free Systems. FASEB J. 2006, 20, 1564–1566. [Google Scholar] [CrossRef] [Green Version]
- Raikhlin, N.T.; Kvetnoy, I.M. Melatonin and Enterochromaffine Cells. Acta Histochem. 1976, 55, 19–24. [Google Scholar] [CrossRef]
- Yasmin, F.; Sutradhar, S.; Das, P.; Mukherjee, S. Gut Melatonin: A Potent Candidate in the Diversified Journey of Melatonin Research. Gen. Comp. Endocrinol. 2021, 303, 113693. [Google Scholar] [CrossRef] [PubMed]
- Bubenik, G.A.; Brown, G.M.; Grota, L.J. Immunohistological Localization of Melatonin in the Rat Digestive System. Experientia 1977, 33, 662–663. [Google Scholar] [CrossRef] [PubMed]
- Huether, G.; Hajak, G.; Reimer, A.; Poeggeler, B.; Blömer, M.; Rodenbeck, A.; Rüther, E. The Metabolic Fate of Infusedl-Tryptophan in Men: Possible Clinical Implications of the Accumulation of Circulating Tryptophan and Tryptophan Metabolites. Psychopharmacology 1992, 109, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Huether, G.; Poeggeler, B.; Reimer, A.; George, A. Effect of Tryptophan Administration on Circulating Melatonin Levels in Chicks and Rats: Evidence for Stimulation of Melatonin Synthesis and Release in the Gastrointestinal Tract. Life Sci. 1992, 51, 945–953. [Google Scholar] [CrossRef]
- Yaga, K.; Reiter, R.J.; Richardson, B.A. Tryptophan Loading Increases Daytime Serum Melatonin Levels in Intact and Pinealectomized Rats. Life Sci. 1993, 52, 1231–1238. [Google Scholar] [CrossRef]
- Jaworek, J.; Leja-Szpak, A.; Bonior, J.; Nawrot, K.; Tomaszewska, R.; Stachura, J.; Sendur, R.; Pawlik, W.; Brzozowski, T.; Konturek, S.J. Protective Effect of Melatonin and Its Precursor L-Tryptophan on Acute Pancreatitis Induced by Caerulein Overstimulation or Ischemia/Reperfusion. J. Pineal Res. 2003, 34, 40–52. [Google Scholar] [CrossRef]
- Chojnacki, C.; Wiśniewska-Jarosińska, M.; Kulig, G.; Majsterek, I.; Reiter, R.J.; Chojnacki, J. Evaluation of Enterochromaffin Cells and Melatonin Secretion Exponents in Ulcerative Colitis. World J. Gastroenterol. 2013, 19, 3602–3607. [Google Scholar] [CrossRef] [PubMed]
- Cevik, H.; Erkanli, G.; Ercan, F.; Isman, C.A.; Yegen, B.C. Exposure to Continuous Darkness Ameliorates Gastric and Colonic Inflammation in the Rat: Both Receptor and Non-Receptor-Mediated Processes. J. Gastroenterol. Hepatol. 2005, 20, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Endo, Y.; Shoji, T.; Fukudo, S. Epidemiology of Irritable Bowel Syndrome. Ann. Gastroenterol. 2015, 28, 158–159. [Google Scholar] [PubMed]
- Paulose, J.K.; Wright, J.M.; Patel, A.G.; Cassone, V.M. Human Gut Bacteria Are Sensitive to Melatonin and Express Endogenous Circadian Rhythmicity. PLoS ONE 2016, 11, e0146643. [Google Scholar] [CrossRef]
- Woo, Y.D.; Jeong, D.; Chung, D.H. Development and Functions of Alveolar Macrophages. Mol. Cells 2021, 44, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Rubins, J.B. Alveolar Macrophages: Wielding the Double-Edged Sword of Inflammation. Am. J. Respir. Crit. Care Med. 2003, 167, 103–104. [Google Scholar] [CrossRef] [PubMed]
- Schagat, T.L.; Wofford, J.A.; Wright, J.R. Surfactant Protein A Enhances Alveolar Macrophage Phagocytosis of Apoptotic Neutrophils. J. Immunol. 2001, 166, 2727–2733. [Google Scholar] [CrossRef] [Green Version]
- Knapp, S.; Leemans, J.C.; Florquin, S.; Branger, J.; Maris, N.A.; Pater, J.; van Rooijen, N.; van der Poll, T. Alveolar Macrophages Have a Protective Antiinflammatory Role during Murine Pneumococcal Pneumonia. Am. J. Respir. Crit. Care Med. 2003, 167, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, J.L.; Dallon, B.W.; Lewis, J.B.; Walton, C.M.; Arroyo, J.A.; Reynolds, P.R.; Bikman, B.T. Diesel Exhaust Particle Exposure Compromises Alveolar Macrophage Mitochondrial Bioenergetics. Int. J. Mol. Sci. 2019, 20, 5598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucchini, R.G.; Dorman, D.C.; Elder, A.; Veronesi, B. Neurological Impacts from Inhalation of Pollutants and the Nose–Brain Connection. NeuroToxicology 2012, 33, 838–841. [Google Scholar] [CrossRef] [Green Version]
- Ramos, E.; López-Muñoz, F.; Gil-Martín, E.; Egea, J.; Álvarez-Merz, I.; Painuli, S.; Semwal, P.; Martins, N.; Hernández-Guijo, J.M.; Romero, A. The Coronavirus Disease 2019 (COVID-19): Key Emphasis on Melatonin Safety and Therapeutic Efficacy. Antioxidants 2021, 10, 1152. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.; Reiter, R.J. Melatonin: Roles in Influenza, Covid-19, and Other Viral Infections. Rev. Med. Virol. 2020, 30. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.; Carbone, A.; Mazzoccoli, G. Aryl Hydrocarbon Receptor Role in Co-Ordinating SARS-CoV-2 Entry and Symptomatology: Linking Cytotoxicity Changes in COVID-19 and Cancers; Modulation by Racial Discrimination Stress. Biology 2020, 9, 249. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.; Carbone, A.; Mazzoccoli, G. Tryptophan Metabolites and Aryl Hydrocarbon Receptor in Severe Acute Respiratory Syndrome, Coronavirus-2 (SARS-CoV-2) Pathophysiology. Int. J. Mol. Sci. 2021, 22, 1597. [Google Scholar] [CrossRef] [PubMed]
- Viola, M.F.; Boeckxstaens, G. Intestinal Resident Macrophages: Multitaskers of the Gut. Neurogastroenterol. Motil. 2020, 32, e13843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, C.; Gomez Perdiguero, E.; Chorro, L.; Szabo-Rogers, H.; Cagnard, N.; Kierdorf, K.; Prinz, M.; Wu, B.; Jacobsen, S.E.W.; Pollard, J.W.; et al. A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells. Science 2012, 336, 86–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ural, B.B.; Yeung, S.T.; Damani-Yokota, P.; Devlin, J.C.; de Vries, M.; Vera-Licona, P.; Samji, T.; Sawai, C.M.; Jang, G.; Perez, O.A.; et al. Identification of a Nerve-Associated, Lung-Resident Interstitial Macrophage Subset with Distinct Localization and Immunoregulatory Properties. Sci. Immunol. 2020, 5, eaax8756. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A.; Chawla, A.; Pollard, J.W. Macrophage Biology in Development, Homeostasis and Disease. Nature 2013, 496, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Córdoba-Moreno, M.O.; de Souza, E.D.S.; Quiles, C.L.; Dos Santos-Silva, D.; Kinker, G.S.; Muxel, S.M.; Markus, R.P.; Fernandes, P.A. Rhythmic Expression of the Melatonergic Biosynthetic Pathway and Its Differential Modulation in Vitro by LPS and IL10 in Bone Marrow and Spleen. Sci. Rep. 2020, 10, 4799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludin, A.; Itkin, T.; Gur-Cohen, S.; Mildner, A.; Shezen, E.; Golan, K.; Kollet, O.; Kalinkovich, A.; Porat, Z.; D’Uva, G.; et al. Monocytes-Macrophages That Express α-Smooth Muscle Actin Preserve Primitive Hematopoietic Cells in the Bone Marrow. Nat. Immunol. 2012, 13, 1072–1082. [Google Scholar] [CrossRef] [PubMed]
- Golan, K.; Kumari, A.; Kollet, O.; Khatib-Massalha, E.; Subramaniam, M.D.; Ferreira, Z.S.; Avemaria, F.; Rzeszotek, S.; García-García, A.; Xie, S.; et al. Daily Onset of Light and Darkness Differentially Controls Hematopoietic Stem Cell Differentiation and Maintenance. Cell Stem Cell 2018, 23, 572–585.e7. [Google Scholar] [CrossRef] [Green Version]
- Golan, K.; Kollet, O.; Markus, R.P.; Lapidot, T. Daily Light and Darkness Onset and Circadian Rhythms Metabolically Synchronize Hematopoietic Stem Cell Differentiation and Maintenance: The Role of Bone Marrow Norepinephrine, Tumor Necrosis Factor, and Melatonin Cycles. Exp. Hematol. 2019, 78, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCord, C.P.; Allen, F.P. Evidences Associating Pineal Gland Function with Alterations in Pigmentation. J. Exp. Zool. 1917, 23, 207–224. [Google Scholar] [CrossRef] [Green Version]
- Lerner, A.B.; Case, J.D.; Mori, W.; Wright, M.R. Melatonin in Peripheral Nerve. Nature 1959, 183, 1821. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmsen, M.; Amirian, I.; Reiter, R.J.; Rosenberg, J.; Gögenur, I. Analgesic Effects of Melatonin: A Review of Current Evidence from Experimental and Clinical Studies. J. Pineal Res. 2011, 51, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Stefani, L.C.; Muller, S.; Torres, I.L.S.; Razzolini, B.; Rozisky, J.R.; Fregni, F.; Markus, R.; Caumo, W. A Phase II, Randomized, Double-Blind, Placebo Controlled, Dose-Response Trial of the Melatonin Effect on the Pain Threshold of Healthy Subjects. PLoS ONE 2013, 8, e74107. [Google Scholar] [CrossRef]
- Kumar, R.; Kumari, K.; Janweja, S.; Kumar, R.; Verma, M.; Sharma, A.; Paliwal, B.; Kishan, R. Role of Melatonin in Attenuation of Hemodynamic Response to Intubation and Anesthetic Requirements: A Randomized, Controlled, Double-Blind Study. Braz. J. Anesthesiol. 2021. [Google Scholar] [CrossRef]
- Wang, B.; Wen, H.; Smith, W.; Hao, D.; He, B.; Kong, L. Regulation Effects of Melatonin on Bone Marrow Mesenchymal Stem Cell Differentiation. J. Cell Physiol. 2019, 234, 1008–1015. [Google Scholar] [CrossRef]
- De Oliveira Tatsch-Dias, M.; Levandovski, R.M.; Custódio de Souza, I.C.; Gregianin Rocha, M.; Magno Fernandes, P.A.C.; Torres, I.L.S.; Hidalgo, M.P.L.; Markus, R.P.; Caumo, W. The Concept of the Immune-Pineal Axis Tested in Patients Undergoing an Abdominal Hysterectomy. Neuroimmunomodulation 2013, 20, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Rosales-Corral, S.; Tan, D.X.; Jou, M.J.; Galano, A.; Xu, B. Melatonin as a Mitochondria-Targeted Antioxidant: One of Evolution’s Best Ideas. Cell Mol. Life Sci. 2017, 74, 3863–3881. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yu, Y.; Shen, Y.; Liu, Q.; Zhao, Z.; Sharma, R.; Reiter, R.J. Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Front. Endocrinol. 2019, 10, 249. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markus, R.P.; Sousa, K.S.; da Silveira Cruz-Machado, S.; Fernandes, P.A.; Ferreira, Z.S. Possible Role of Pineal and Extra-Pineal Melatonin in Surveillance, Immunity, and First-Line Defense. Int. J. Mol. Sci. 2021, 22, 12143. https://doi.org/10.3390/ijms222212143
Markus RP, Sousa KS, da Silveira Cruz-Machado S, Fernandes PA, Ferreira ZS. Possible Role of Pineal and Extra-Pineal Melatonin in Surveillance, Immunity, and First-Line Defense. International Journal of Molecular Sciences. 2021; 22(22):12143. https://doi.org/10.3390/ijms222212143
Chicago/Turabian StyleMarkus, Regina P., Kassiano S. Sousa, Sanseray da Silveira Cruz-Machado, Pedro A. Fernandes, and Zulma S. Ferreira. 2021. "Possible Role of Pineal and Extra-Pineal Melatonin in Surveillance, Immunity, and First-Line Defense" International Journal of Molecular Sciences 22, no. 22: 12143. https://doi.org/10.3390/ijms222212143
APA StyleMarkus, R. P., Sousa, K. S., da Silveira Cruz-Machado, S., Fernandes, P. A., & Ferreira, Z. S. (2021). Possible Role of Pineal and Extra-Pineal Melatonin in Surveillance, Immunity, and First-Line Defense. International Journal of Molecular Sciences, 22(22), 12143. https://doi.org/10.3390/ijms222212143