Abstract
Alzheimers disease (AD) is characterized by two major features: (1) degeneration of basal forebrain cholinergic neurons and ensuing deficient cholinergic functions in cortex and hippocampus; (2) extracellular protein aggregates containing β-amyloid peptides (Aβ) in these cholinergic target areas. So far, the most effective therapy for AD is to enhance cholinergic transmission. Neuromodulatory functions of the cholinergic system are mainly mediated by muscarinic receptors (mAChRs). It has long been recognized that mAChRs are crucial for the control of high-level cognitive processes. Drugs that activate mAChRs are helpful in ameliorating cognitive deficits of AD. On the other hand, mounting evidence have established detrimental effects of Aβ to cognitive functions. Despite intensive research on AD, it remains unclear how these two prominent features of the disease may be linked to cause cognitive impairments. In this review, we will summarize a series of recent findings on the interactions between cholinergic functions and β-amyloid in normal animals and AD models, and discuss their potential implications in the pathophysiology and treatment of Alzheimers disease.
Keywords: alzheimers disease, cholinergic, muscarinic receptors, amyloid peptides, insulin, gabaergic transmission, prefrontal cortex, protein kinase c
Current Alzheimer Research
Title: Alzheimers Disease: Interactions Between Cholinergic Functions and β- amyloid
Volume: 1 Issue: 4
Author(s): Zhen Yan and Jian Feng
Affiliation:
Keywords: alzheimers disease, cholinergic, muscarinic receptors, amyloid peptides, insulin, gabaergic transmission, prefrontal cortex, protein kinase c
Abstract: Alzheimers disease (AD) is characterized by two major features: (1) degeneration of basal forebrain cholinergic neurons and ensuing deficient cholinergic functions in cortex and hippocampus; (2) extracellular protein aggregates containing β-amyloid peptides (Aβ) in these cholinergic target areas. So far, the most effective therapy for AD is to enhance cholinergic transmission. Neuromodulatory functions of the cholinergic system are mainly mediated by muscarinic receptors (mAChRs). It has long been recognized that mAChRs are crucial for the control of high-level cognitive processes. Drugs that activate mAChRs are helpful in ameliorating cognitive deficits of AD. On the other hand, mounting evidence have established detrimental effects of Aβ to cognitive functions. Despite intensive research on AD, it remains unclear how these two prominent features of the disease may be linked to cause cognitive impairments. In this review, we will summarize a series of recent findings on the interactions between cholinergic functions and β-amyloid in normal animals and AD models, and discuss their potential implications in the pathophysiology and treatment of Alzheimers disease.
Export Options
About this article
Cite this article as:
Yan Zhen and Feng Jian, Alzheimers Disease: Interactions Between Cholinergic Functions and β- amyloid, Current Alzheimer Research 2004; 1 (4) . https://dx.doi.org/10.2174/1567205043331992
DOI https://dx.doi.org/10.2174/1567205043331992 |
Print ISSN 1567-2050 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5828 |
Call for Papers in Thematic Issues
New Advances in the Prevention, Diagnosis, Treatment, and Rehabilitation of Alzheimer's Disease
Aims and Scope: Introduction: Alzheimer's disease (AD) poses a significant global health challenge, with an increasing prevalence that demands concerted efforts to advance our understanding and strategies for prevention, diagnosis, treatment, and rehabilitation. This thematic issue aims to bring together cutting-edge research and innovative approaches from multidisciplinary perspectives to address ...read more
Early nutritional intervention and physical activity in the prevention of Alzheimer's disease and other dementias
The aim is to broaden the knowledge about the impact of the consumption of food ingredients, diet ingredients, methods of processing of food raw materials as well as the impact of composing of diets on the possibility of preventing Alzheimer's disease and other types of dementia at each stage of ...read more
Enhancing Alzheimer's Disease Diagnosis and Treatment Efficacy Prediction with Explainable AI, Radiomics, Biomarkers, and Multimodal Neuroimaging
The thematic issue, Enhancing Alzheimer's Disease Diagnosis and Treatment Efficacy Prediction with Explainable AI, Radiomics, Biomarkers, and Multimodal Neuroimaging, aims to bridge the gap between advanced computational techniques and clinical practice in Alzheimer’s disease research. Alzheimer’s disease poses significant challenges in early diagnosis, disease progression monitoring, and predicting treatment efficacy. ...read more
Integrative Perspectives on Neurodegeneration and Aging: From Molecular Insights to Therapeutic Strategies
The increasing burden of age-related neurodegenerative diseases demands an immediate and pressing need for research in all aspects, from molecular mechanisms to therapeutic interventions. The special issue in Current Alzheimer Research "Integrative Perspectives on Neurodegeneration and Aging: From Molecular Insights to Therapeutic Strategies" aims to highlight the summary of state-of-the-art ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Tacrine Derivatives and Alzheimers Disease
Current Medicinal Chemistry Genetic and Epigenetic Drug Targets in Myelodysplastic Syndromes
Current Pharmaceutical Design Inhibition of Angiogenesis as a Treatment Strategy for Neuroblastoma
Current Cancer Therapy Reviews Inhibition of Hypusine Biosynthesis in Plasmodium: A Possible, New Strategy in Prevention and Therapy of Malaria
Mini-Reviews in Medicinal Chemistry Recent Developments of Melatonin Related Antioxidant Compounds
Combinatorial Chemistry & High Throughput Screening The Therapeutic Potential of Rutin for Diabetes: An Update
Mini-Reviews in Medicinal Chemistry Survivin as a Prognostic/Predictive Marker and Molecular Target in Cancer Therapy
Current Medicinal Chemistry Phytochemical-Mediated Glioma Targeted Treatment: Drug Resistance and Novel Delivery Systems
Current Medicinal Chemistry VIP in Neurological Diseases: More Than A Neuropeptide
Endocrine, Metabolic & Immune Disorders - Drug Targets Cancer Stem Cells: A New Paradigm for Understanding Tumor Growth and Progression and Drug Resistance
Current Medicinal Chemistry Proteasome Inhibitors and Modulators of Angiogenesis in Multiple Myeloma
Current Medicinal Chemistry Endocannabinoid Signaling in Midbrain Dopamine Neurons: More than Physiology?
Current Neuropharmacology Boron Nitride Nanotubes: Production, Properties, Biological Interactions and Potential Applications as Therapeutic Agents in Brain Diseases
Current Nanoscience Targeting Proliferating Cell Nuclear Antigen (PCNA) as an Effective Strategy to Inhibit Tumor Cell Proliferation
Current Cancer Drug Targets Double-Edged Effects of Arsenic Compounds: Anticancer and Carcinogenic Effects
Current Drug Metabolism Structure-Activity Relationships and Therapeutic Potential of Purinergic P2X7 Receptor Antagonists
Current Medicinal Chemistry Ladostigil: A Novel Multimodal Neuroprotective Drug with Cholinesterase and Brain-Selective Monoamine Oxidase Inhibitory Activities for Alzheimers Disease Treatment
Current Drug Targets Lentiviral Vectors: A Versatile Tool to Fight Cancer
Current Molecular Medicine Hormonal Control of the Neuropeptide Y System
Current Protein & Peptide Science Processing of Amyloid Precursor Protein and Amyloid Peptide Neurotoxicity
Current Alzheimer Research