Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

PPARγ agonists: potential treatment for autism spectrum disorder by inhibiting the canonical WNT/β-catenin pathway

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is characterized by a deficit in social interactions and communication with repetitive and restrictive behavior. No curative treatments are available for ASD. Pharmacological treatments do not address the core ASD behaviors, but target comorbid symptoms. Dysregulation of the core neurodevelopmental pathways is associated with the clinical presentation of ASD, and the canonical WNT/β-catenin pathway is one of the major pathways involved. The canonical WNT/β-catenin pathway participates in the development of the central nervous system, and its dysregulation involves developmental cognitive disorders. In numerous tissues, the canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPARγ) act in an opposed manner. In ASD, the canonical WNT/β-catenin pathway is increased while PPARγ seems to be decreased. PPARγ agonists present a beneficial effect in treatment for ASD children through their anti-inflammatory role. Moreover, they induce the inhibition of the canonical WNT/β-catenin pathway in several pathophysiological states. We focus this review on the hypothesis of an opposed interplay between PPARγ and the canonical WNT/β-catenin pathway in ASD and the potential role of PPARγ agonists as treatment for ASD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Posar A, Resca F, Visconti P. Autism according to diagnostic and statistical manual of mental disorders 5(th) edition: The need for further improvements. J Pediatr Neurosci. 2015;10:146–8.

    PubMed  PubMed Central  Google Scholar 

  2. Ospina MB, Krebs Seida J, Clark B, Karkhaneh M, Hartling L, Tjosvold L, et al. Behavioural and developmental interventions for autism spectrum disorder: a clinical systematic review. PLoS One 2008;3:e3755.

    PubMed  PubMed Central  Google Scholar 

  3. Altemeier WA,Altemeier LE, How can early, intensive training help a genetic disorder?. Pediatr Ann. 2009;38:167–70.

    PubMed  Google Scholar 

  4. Doyle CA, McDougle CJ. Pharmacologic treatments for the behavioral symptoms associated with autism spectrum disorders across the lifespan. Dialog- Clin Neurosci. 2012;14:263–79.

    Google Scholar 

  5. Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A. The familial risk of autism. JAMA 2014;311:1770–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tick B, Bolton P, Happé F, Rutter M, Rijsdijk F. Heritability of autism spectrum disorders: a meta-analysis of twin studies. J Child Psychol Psychiatry. 2016;57:585–95.

    PubMed  Google Scholar 

  7. Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB, et al. Most genetic risk for autism resides with common variation. Nat Genet. 2014;46:881–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kwan V, Unda BK, Singh KK. Wnt signaling networks in autism spectrum disorder and intellectual disability. J Neurodev Disord. 2016;8:45.

    PubMed  PubMed Central  Google Scholar 

  9. Krumm N, O’Roak BJ, Shendure J, Eichler EE. A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci. 2014;37:95–105.

    CAS  PubMed  Google Scholar 

  10. Lecarpentier Y, Claes V, Duthoit G, Hébert J-L. Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction. Front Physiol. 2014;5:429.

    PubMed  PubMed Central  Google Scholar 

  11. Caracci MO, Ávila ME, De Ferrari GV. Synaptic Wnt/GSK3β Signaling Hub in Autism. Neural Plast. 2016;2016:9603751.

    PubMed  PubMed Central  Google Scholar 

  12. Mulligan KA, Cheyette BNR. Neurodevelopmental perspectives on Wnt signaling in psychiatry. Mol Neuropsychiatry. 2017;2:219–46.

    PubMed  PubMed Central  Google Scholar 

  13. Vallée A, Vallée J-N. Warburg effect hypothesis in autism spectrum disorders. Mol Brain. 2018;11:1.

    PubMed  PubMed Central  Google Scholar 

  14. Brady LJ, Bartley AF, Li Q, McMeekin LJ, Hablitz JJ, Cowell RM, et al. Transcriptional dysregulation causes altered modulation of inhibition by haloperidol. Neuropharmacology. 2016;111:304–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu J, Wang H, Zuo Y, Farmer SR. Functional interaction between peroxisome proliferator-activated receptor gamma and beta-catenin. Mol Cell Biol. 2006;26:5827–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Moldes M, Zuo Y, Morrison RF, Silva D, Park B-H, Liu J, et al. Peroxisome-proliferator-activated receptor gamma suppresses Wnt/beta-catenin signalling during adipogenesis. Biochem J. 2003;376:607–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharma C, Pradeep A, Wong L, Rana A, Rana B. Peroxisome proliferator-activated receptor gamma activation can regulate beta-catenin levels via a proteasome-mediated and adenomatous polyposis coli-independent pathway. J Biol Chem. 2004;279:35583–94.

    CAS  PubMed  Google Scholar 

  18. Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 1992;68:879–87.

    CAS  PubMed  Google Scholar 

  19. Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med. 2013;19:557–66.

    CAS  PubMed  Google Scholar 

  20. Wei J, Bhattacharyya S, Tourtellotte WG, Varga J. Fibrosis in systemic sclerosis: emerging concepts and implications for targeted therapy. Autoimmun Rev. 2011;10:267–75.

    CAS  PubMed  Google Scholar 

  21. Elbrecht A, Chen Y, Cullinan CA, Hayes N, Leibowitz MD, Moller DE, et al. Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2. Biochem Biophys Res Commun. 1996;; 224:431–7.

    PubMed  Google Scholar 

  22. Fajas L, Auboeuf D, Raspé E, Schoonjans K, Lefebvre AM, Saladin R, et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem. 1997;272:18779–89.

    CAS  PubMed  Google Scholar 

  23. Ricote M, Glass CK. PPARs and molecular mechanisms of transrepression. Biochim Biophys Acta. 2007;1771:926–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Simon MF, Daviaud D, Pradère JP, Grès S, Guigné C, Wabitsch M, et al. Lysophosphatidic acid inhibits adipocyte differentiation via lysophosphatidic acid 1 receptor-dependent down-regulation of peroxisome proliferator-activated receptor gamma2. J Biol Chem. 2005;280:14656–62.

    CAS  PubMed  Google Scholar 

  25. Tan JTM, McLennan SV, Song WW, Lo LW-Y, Bonner JG, Williams PF, et al. Connective tissue growth factor inhibits adipocyte differentiation. Am J Physiol Cell Physiol. 2008;295:C740–751.

    CAS  PubMed  Google Scholar 

  26. Yamasaki S, Nakashima T, Kawakami A, Miyashita T, Tanaka F, Ida H, et al. Cytokines regulate fibroblast-like synovial cell differentiation to adipocyte-like cells. Rheumatol Oxf Engl. 2004;43:448–52.

    CAS  Google Scholar 

  27. Okamura M, Kudo H, Wakabayashi K, Tanaka T, Nonaka A, Uchida A, et al. COUP-TFII acts downstream of Wnt/beta-catenin signal to silence PPARgamma gene expression and repress adipogenesis. Proc Natl Acad Sci USA. 2009;106:5819–24.

    CAS  PubMed  Google Scholar 

  28. Lakatos HF, Thatcher TH, Kottmann RM, Garcia TM, Phipps RP, Sime PJ. The role of PPARs in lung fibrosis. PPAR Res. 2007;2007:71323.

    PubMed  PubMed Central  Google Scholar 

  29. Bernardo A, Minghetti L. PPAR-gamma agonists as regulators of microglial activation and brain inflammation. Curr Pharm Des. 2006;12:93–109.

    CAS  PubMed  Google Scholar 

  30. Lucas EK, Markwardt SJ, Gupta S, Meador-Woodruff JH, Lin JD, Overstreet-Wadiche L, et al. Parvalbumin deficiency and GABAergic dysfunction in mice lacking PGC-1alpha. J Neurosci J Soc Neurosci. 2010;30:7227–35.

    CAS  Google Scholar 

  31. Gogolla N, Leblanc JJ, Quast KB, Südhof TC, Fagiolini M, Hensch TK. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J Neurodev Disord. 2009;1:172–81.

    PubMed  PubMed Central  Google Scholar 

  32. Hashemi E, Ariza J, Rogers H, Noctor SC, Martínez-Cerdeño V. The number of parvalbumin-expressing interneurons is decreased in the prefrontal cortex in autism. Cereb Cortex N Y N. 2018;28:690.

    Google Scholar 

  33. Bartley AF, Lucas EK, Brady LJ, Li Q, Hablitz JJ, Cowell RM, et al. Interneuron transcriptional dysregulation causes frequency-dependent alterations in the balance of inhibition and excitation in hippocampus. J Neurosci J Soc Neurosci. 2015;35:15276–90.

    CAS  Google Scholar 

  34. Gandal MJ, Nesbitt AM, McCurdy RM, Alter MD. Measuring the maturity of the fast-spiking interneuron transcriptional program in autism, schizophrenia, and bipolar disorder. PLoS One. 2012;7:e41215.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Dev Camb Engl. 2009;136:3205–14.

    Google Scholar 

  36. Al-Harthi L. Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. J Neuroimmune Pharmacol. 2012;7:725–30.

    PubMed  PubMed Central  Google Scholar 

  37. Inestrosa NC, Arenas E. Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci. 2010;11:77–86.

    CAS  PubMed  Google Scholar 

  38. Itasaki N, Jones CM, Mercurio S, Rowe A, Domingos PM, Smith JC, et al. Wise, a context-dependent activator and inhibitor of Wnt signalling. Dev Camb Engl. 2003;130:4295–305.

    CAS  Google Scholar 

  39. Sharma K, Choi S-Y, Zhang Y, Nieland TJF, Long S, Li M, et al. High-throughput genetic screen for synaptogenic factors: identification of LRP6 as critical for excitatory synapse development. Cell Rep. 2013;5:1330–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kroon T, Sierksma MC, Meredith RM. Investigating mechanisms underlying neurodevelopmental phenotypes of autistic and intellectual disability disorders: a perspective. Front Syst Neurosci. 2013;7:75.

    PubMed  PubMed Central  Google Scholar 

  41. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

    CAS  PubMed  Google Scholar 

  42. Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009;10:468–77.

    CAS  PubMed  Google Scholar 

  43. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell 2012;149:1192–205.

    CAS  Google Scholar 

  44. Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13:11–26.

    CAS  PubMed  Google Scholar 

  45. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009;17:9–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci. 2007;120:3327–35.

    CAS  PubMed  Google Scholar 

  47. Brazil DP, Yang Z-Z, Hemmings BA. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci. 2004;29:233–42.

    CAS  PubMed  Google Scholar 

  48. Yu JSL, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Dev Camb Engl. 2016;143:3050–60.

    CAS  Google Scholar 

  49. Chen J, Alberts I, Li X. Dysregulation of the IGF-I/PI3K/AKT/mTOR signaling pathway in autism spectrum disorders. Int J Dev Neurosci J Int Soc Dev Neurosci. 2014;35:35–41.

    Google Scholar 

  50. Huang J, Nguyen-McCarty M, Hexner EO, Danet-Desnoyers G, Klein PS. Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways. Nat Med. 2012;18:1778–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou B, Buckley ST, Patel V, Liu Y, Luo J, Krishnaveni MS, et al. Troglitazone attenuates TGF-β1-induced EMT in alveolar epithelial cells via a PPARγ-independent mechanism. PLoS One. 2012;7:e38827.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hur E-M, Zhou F-Q. GSK3 signalling in neural development. Nat Rev Neurosci. 2010;11:539–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu D, Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci. 2010;35:161–8.

    CAS  PubMed  Google Scholar 

  54. Ross SE, Erickson RL, Hemati N, MacDougald OA. Glycogen synthase kinase 3 is an insulin-regulated C/EBPalpha kinase. Mol Cell Biol. 1999;19:8433–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tang Q-Q, Grønborg M, Huang H, Kim J-W, Otto TC, Pandey A, et al. Sequential phosphorylation of CCAAT enhancer-binding protein beta by MAPK and glycogen synthase kinase 3beta is required for adipogenesis. Proc Natl Acad Sci USA. 2005;102:9766–71.

    CAS  PubMed  Google Scholar 

  56. Park KS, Lee RD, Kang S-K, Han SY, Park KL, Yang KH, et al. Neuronal differentiation of embryonic midbrain cells by upregulation of peroxisome proliferator-activated receptor-gamma via the JNK-dependent pathway. Exp Cell Res. 2004;297:424–33.

    CAS  PubMed  Google Scholar 

  57. Yue X, Lan F, Yang W, Yang Y, Han L, Zhang A, et al. Interruption of β-catenin suppresses the EGFR pathway by blocking multiple oncogenic targets in human glioma cells. Brain Res. 2010;1366:27–37.

    CAS  PubMed  Google Scholar 

  58. De Ferrari GV, Moon RT. The ups and downs of Wnt signaling in prevalent neurological disorders. Oncogene. 2006;25:7545–53.

    PubMed  Google Scholar 

  59. Okerlund ND, Cheyette BNR. Synaptic Wnt signaling-a contributor to major psychiatric disorders? J Neurodev Disord. 2011;3:162–74.

    PubMed  PubMed Central  Google Scholar 

  60. Kalkman HO. A review of the evidence for the canonical Wnt pathway in autism spectrum disorders. Mol Autism. 2012;3:10.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wassink TH, Piven J, Vieland VJ, Huang J, Swiderski RE, Pietila J, et al. Evidence supporting WNT2 as an autism susceptibility gene. Am J Med Genet. 2001;105:406–13.

    CAS  PubMed  Google Scholar 

  62. Boon EMJ, van der Neut R, van de Wetering M, Clevers H, Pals ST. Wnt signaling regulates expression of the receptor tyrosine kinase met in colorectal cancer. Cancer Res. 2002;62:5126–8.

    CAS  PubMed  Google Scholar 

  63. Tuynman JB, Vermeulen L, Boon EM, Kemper K, Zwinderman AH, Peppelenbosch MP, et al. Cyclooxygenase-2 inhibition inhibits c-Met kinase activity and Wnt activity in colon cancer. Cancer Res. 2008;68:1213–20.

    CAS  PubMed  Google Scholar 

  64. Thompson BA, Tremblay V, Lin G, Bochar DA. CHD8 is an ATP-dependent chromatin remodeling factor that regulates beta-catenin target genes. Mol Cell Biol. 2008;28:3894–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet. 2011;43:585–9.

    PubMed  PubMed Central  Google Scholar 

  66. Packer A. Enrichment of factors regulating canonical Wnt signaling among autism risk genes. Mol Psychiatry. 2018;23:492–3.

    CAS  PubMed  Google Scholar 

  67. Martin P-M, Yang X, Robin N, Lam E, Rabinowitz JS, Erdman CA, et al. A rare WNT1 missense variant overrepresented in ASD leads to increased Wnt signal pathway activation. Transl Psychiatry. 2013;3:e301.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron. 2011;70:898–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Turner TN, Hormozdiari F, Duyzend MH, McClymont SA, Hook PW, Iossifov I, et al. Genome sequencing of autism-affected families reveals disruption of putative noncoding regulatory DNA. Am J Hum Genet. 2016;98:58–74.

    CAS  PubMed  Google Scholar 

  70. Mohn JL, Alexander J, Pirone A, Palka CD, Lee S-Y, Mebane L, et al. Adenomatous polyposis coli protein deletion leads to cognitive and autism-like disabilities. Mol Psychiatry. 2014;19:1133–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485:246–50.

    PubMed  PubMed Central  Google Scholar 

  72. Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 2012;149:525–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lotan A, Fenckova M, Bralten J, Alttoa A, Dixson L, Williams RW, et al. Neuroinformatic analyses of common and distinct genetic components associated with major neuropsychiatric disorders. Front Neurosci. 2014;8:331.

    PubMed  PubMed Central  Google Scholar 

  74. Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. McBride KL, Varga EA, Pastore MT, Prior TW, Manickam K, Atkin JF, et al. Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Res J Int Soc Autism Res. 2010;3:137–41.

    Google Scholar 

  76. Spinelli L, Black FM, Berg JN, Eickholt BJ, Leslie NR. Functionally distinct groups of inherited PTEN mutations in autism and tumour syndromes. J Med Genet. 2015;52:128–34.

    CAS  PubMed  Google Scholar 

  77. Frazier TW, Embacher R, Tilot AK, Koenig K, Mester J, Eng C. Molecular and phenotypic abnormalities in individuals with germline heterozygous PTEN mutations and autism. Mol Psychiatry. 2015;20:1132–8.

    CAS  PubMed  Google Scholar 

  78. Chen Y, Huang W-C, Séjourné J, Clipperton-Allen AE, Page DT. Pten mutations alter brain growth trajectory and allocation of cell types through elevated β-catenin signaling. J Neurosci J Soc Neurosci. 2015;35:10252–67.

    CAS  Google Scholar 

  79. Vanhaesebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol. 2012;13:195–203.

    CAS  PubMed  Google Scholar 

  80. Mao H, Lebrun DG, Yang J, Zhu VF, Li M. Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Invest. 2012;30:48–56.

    PubMed  PubMed Central  Google Scholar 

  81. Kwon C-H, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, et al. Pten regulates neuronal arborization and social interaction in mice. Neuron. 2006;50:377–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lugo JN, Smith GD, Arbuckle EP, White J, Holley AJ, Floruta CM, et al. Deletion of PTEN produces autism-like behavioral deficits and alterations in synaptic proteins. Front Mol Neurosci. 2014;7:27.

    PubMed  PubMed Central  Google Scholar 

  83. Meunier H, Carraz G, Neunier Y, Eymard P, Aimard M. [Pharmacodynamic properties of N-dipropylacetic acid]. Therapie. 1963;18:435–8.

    CAS  PubMed  Google Scholar 

  84. Peterson GM, Naunton M. Valproate: a simple chemical with so much to offer. J Clin Pharm Ther. 2005;30:417–21.

    CAS  PubMed  Google Scholar 

  85. Wang L, Liu Y, Li S, Long Z-Y, Wu Y-M. Wnt signaling pathway participates in valproic acid-induced neuronal differentiation of neural stem cells. Int J Clin Exp Pathol. 2015;8:578–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Qin L, Dai X, Yin Y. Valproic acid exposure sequentially activates Wnt and mTOR pathways in rats. Mol Cell Neurosci. 2016;75:27–35.

    CAS  PubMed  Google Scholar 

  87. Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA. 2013;309:1696–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Vallée A, Lecarpentier Y. Crosstalk between peroxisome proliferator-activated receptor gamma and the canonical WNT/β-catenin pathway in chronic inflammation and oxidative stress during carcinogenesis. Front Immunol. 2018;9:745.

    PubMed  PubMed Central  Google Scholar 

  89. Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Thermodynamics in gliomas: interactions between the canonical WNT/beta-catenin pathway and PPAR gamma. Front Physiol. 2017;8:352.

    PubMed  PubMed Central  Google Scholar 

  90. Lecarpentier Y, Claes V, Vallée A, Hébert J-L. Interactions between PPAR gamma and the canonical Wnt/beta-catenin pathway in type 2 diabetes and colon cancer. PPAR Res. 2017;2017:1–9.

    Google Scholar 

  91. Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget. 2017;8:90579. 10.18632/oncotarget.21234.

    PubMed  PubMed Central  Google Scholar 

  92. Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Thermodynamics in neurodegenerative diseases: interplay between canonical WNT/beta-catenin pathway-PPAR gamma, energy metabolism and circadian rhythms. Neuromolecular Med. 2018;20:174–204. https://doi.org/10.1007/s12017-018-8486-x.

    Article  PubMed  Google Scholar 

  93. Vallée A, Vallée J-N, Guillevin R, Lecarpentier Y. Interactions between the canonical WNT/beta-catenin pathway and PPAR gamma on neuroinflammation, demyelination, and remyelination in multiple sclerosis. Cell Mol Neurobiol. 2017;38:783–95. https://doi.org/10.1007/s10571-017-0550-9.

    Article  PubMed  Google Scholar 

  94. Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. PPARγ agonists: potential treatments for exudative age-related macular degeneration. Life Sci. 2017;188:123–130. https://doi.org/10.1016/j.lfs.2017.09.008.

    Article  PubMed  Google Scholar 

  95. Takada I,Kouzmenko AP,Kato S, Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol. 2009;5:442–7.

    CAS  PubMed  Google Scholar 

  96. Lu D, Carson DA. Repression of beta-catenin signaling by PPAR gamma ligands. Eur J Pharmacol. 2010;636:198–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Garcia-Gras E, Lombardi R, Giocondo MJ, Willerson JT, Schneider MD, Khoury DS, et al. Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest. 2006;116:2012–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Farshbaf MJ, Ghaedi K, Shirani M, Nasr-Esfahani MH. Peroxisome proliferator activated receptor gamma (PPARγ) as a therapeutic target for improvement of cognitive performance in Fragile-X. Med Hypotheses. 2014;82:291–4.

    CAS  PubMed  Google Scholar 

  99. Xu C, Wang J, Zhu T, Shen Y, Tang X, Fang L, et al. Cross-talking between PPAR and WNT signaling and its regulation in mesenchymal stem cell differentiation. Curr Stem Cell Res Ther. 2016;11:247–54.

    CAS  PubMed  Google Scholar 

  100. Drygiannakis I, Valatas V, Sfakianaki O, Bourikas L, Manousou P, Kambas K, et al. Proinflammatory cytokines induce crosstalk between colonic epithelial cells and subepithelial myofibroblasts: implication in intestinal fibrosis. J Crohns Colitis. 2013;7:286–300.

    PubMed  Google Scholar 

  101. Farmer SR. Regulation of PPARgamma activity during adipogenesis. Int J Obes. 2005;29(Suppl 1):S13–16. 2005

    CAS  Google Scholar 

  102. Jeon K-I, Kulkarni A, Woeller CF, Phipps RP, Sime PJ, Hindman HB, et al. Inhibitory effects of PPARγ ligands on TGF-β1-induced corneal myofibroblast transformation. Am J Pathol. 2014;184:1429–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kumar V, Mundra V, Mahato RI. Nanomedicines of Hedgehog inhibitor and PPAR-γ agonist for treating liver fibrosis. Pharm Res. 2014;31:1158–69.

    CAS  PubMed  Google Scholar 

  104. Lee Y, Kim SH, Lee YJ, Kang ES, Lee B-W, Cha BS, et al. Transcription factor snail is a novel regulator of adipocyte differentiation via inhibiting the expression of peroxisome proliferator-activated receptor γ. Cell Mol Life Sci CMLS. 2013;70:3959–71.

    CAS  PubMed  Google Scholar 

  105. Li Q, Yan Z, Li F, Lu W, Wang J, Guo C. The improving effects on hepatic fibrosis of interferon-γ liposomes targeted to hepatic stellate cells. Nanotechnology. 2012;23:265101.

    PubMed  Google Scholar 

  106. Liu J, Farmer SR. Regulating the balance between peroxisome proliferator-activated receptor gamma and beta-catenin signaling during adipogenesis. A glycogen synthase kinase 3beta phosphorylation-defective mutant of beta-catenin inhibits expression of a subset of adipogenic genes. J Biol Chem. 2004;279:45020–7.

    CAS  PubMed  Google Scholar 

  107. Qian J, Niu M, Zhai X, Zhou Q, Zhou Y. β-Catenin pathway is required for TGF-β1 inhibition of PPARγ expression in cultured hepatic stellate cells. Pharmacol Res. 2012;66:219–25.

    CAS  PubMed  Google Scholar 

  108. Segel MJ, Izbicki G, Cohen PY, Or R, Christensen TG, Wallach-Dayan SB, et al. Role of interferon-gamma in the evolution of murine bleomycin lung fibrosis. Am J Physiol Lung Cell Mol Physiol. 2003;285:L1255–1262.

    CAS  PubMed  Google Scholar 

  109. Shim CY, Song B-W, Cha M-J, Hwang K-C, Park S, Hong G-R, et al. Combination of a peroxisome proliferator-activated receptor-gamma agonist and an angiotensin II receptor blocker attenuates myocardial fibrosis and dysfunction in type 2 diabetic rats. J Diabetes Investig. 2014;5:362–71.

    CAS  PubMed  Google Scholar 

  110. Sabatino L, Pancione M, Votino C, Colangelo T, Lupo A, Novellino E, et al. Emerging role of the β-catenin-PPARγ axis in the pathogenesis of colorectal cancer. World J Gastroenterol. 2014;20:7137–51.

    PubMed  PubMed Central  Google Scholar 

  111. Akinyeke TO, Stewart LV. Troglitazone suppresses c-Myc levels in human prostate cancer cells via a PPARγ-independent mechanism. Cancer Biol Ther. 2011;11:1046–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Di Gregorio J, Sferra R, Speca S, Vetuschi A, Dubuquoy C, Desreumaux P, et al. Role of glycogen synthase kinase-3β and PPAR-γ on epithelial-to-mesenchymal transition in DSS-induced colorectal fibrosis. PLoS One. 2017;12:e0171093.

    PubMed  PubMed Central  Google Scholar 

  113. Gustafson B, Eliasson B, Smith U. Thiazolidinediones increase the wingless-type MMTV integration site family (WNT) inhibitor Dickkopf-1 in adipocytes: a link with osteogenesis. Diabetologia. 2010;53:536–40.

    CAS  PubMed  Google Scholar 

  114. Prusty D, Park B-H, Davis KE, Farmer SR. Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPARgamma) and C/EBPalpha gene expression during the differentiation of 3T3-L1 preadipocytes. J Biol Chem. 2002;277:46226–32.

    CAS  PubMed  Google Scholar 

  115. Kim S, Ha JM, Yun SJ, Kim EK, Chung SW, Hong KW, et al. Transcriptional activation of peroxisome proliferator-activated receptor-gamma requires activation of both protein kinase A and Akt during adipocyte differentiation. Biochem Biophys Res Commun. 2010;399:55–59.

    CAS  PubMed  Google Scholar 

  116. Park HJ, Yun J, Jang S-H, Kang SN, Jeon B-S, Ko Y-G, et al. Coprinus comatus cap inhibits adipocyte differentiation via regulation of PPARγ and Akt signaling pathway. PLoS One. 2014;9:e105809.

    PubMed  PubMed Central  Google Scholar 

  117. Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol. 2001;65:391–426.

    CAS  PubMed  Google Scholar 

  118. Jeon M, Rahman N, Kim Y-S. Wnt/β-catenin signaling plays a distinct role in methyl gallate-mediated inhibition of adipogenesis. Biochem Biophys Res Commun. 2016;479:22–27.

    CAS  PubMed  Google Scholar 

  119. Huelsken J, Behrens J. The Wnt signalling pathway. J Cell Sci. 2002;115:3977–8.

    CAS  PubMed  Google Scholar 

  120. Aljada A, O’Connor L, Fu Y-Y, Mousa SA. PPAR gamma ligands, rosiglitazone and pioglitazone, inhibit bFGF- and VEGF-mediated angiogenesis. Angiogenesis. 2008;11:361–7.

    CAS  PubMed  Google Scholar 

  121. Goetze S, Eilers F, Bungenstock A, Kintscher U, Stawowy P, Blaschke F, et al. PPAR activators inhibit endothelial cell migration by targeting Akt. Biochem Biophys Res Commun. 2002;293:1431–7.

    CAS  PubMed  Google Scholar 

  122. Gebhardt R, Hovhannisyan A. Organ patterning in the adult stage: the role of Wnt/beta-catenin signaling in liver zonation and beyond. Dev Dyn Publ Am Assoc Anat. 2010;239:45–55.

    CAS  Google Scholar 

  123. Lehwald N, Tao G-Z, Jang KY, Papandreou I, Liu B, Liu B, et al. β-Catenin regulates hepatic mitochondrial function and energy balance in mice. Gastroenterology. 2012;143:754–64.

    CAS  PubMed  Google Scholar 

  124. Ajmone-Cat MA, D’Urso MC, di Blasio G, Brignone MS, De Simone R, Minghetti L. Glycogen synthase kinase 3 is part of the molecular machinery regulating the adaptive response to LPS stimulation in microglial cells. Brain Behav Immun. 2016;55:225–35.

    CAS  PubMed  Google Scholar 

  125. Jansson EA, Are A, Greicius G, Kuo I-C, Kelly D, Arulampalam V, et al. The Wnt/beta-catenin signaling pathway targets PPARgamma activity in colon cancer cells. Proc Natl Acad Sci USA. 2005;102:1460–5.

    CAS  PubMed  Google Scholar 

  126. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57:67–81.

    CAS  PubMed  Google Scholar 

  127. Pardo CA, Vargas DL, Zimmerman AW. Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry Abingdon Engl. 2005;17:485–95.

    Google Scholar 

  128. Cohly HHP, Panja A. Immunological findings in autism. Int Rev Neurobiol. 2005;71:317–41.

    CAS  PubMed  Google Scholar 

  129. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–71.

    CAS  PubMed  Google Scholar 

  130. Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet Lond Engl. 2009;373:2125–35.

    CAS  Google Scholar 

  131. Xu J, Rajaratnam R. Cardiovascular safety of non-insulin pharmacotherapy for type 2 diabetes. Cardiovasc Diabetol. 2017;16:18.

    PubMed  PubMed Central  Google Scholar 

  132. Dormandy JA, Charbonnel B, Eckland DJA, Erdmann E, Massi-Benedetti M, Moules IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet Lond Engl. 2005;366:1279–89.

    CAS  Google Scholar 

  133. Goltsman I, Khoury EE, Winaver J, Abassi Z. Does Thiazolidinedione therapy exacerbate fluid retention in congestive heart failure? Pharmacol Ther. 2016;168:75–97.

    CAS  PubMed  Google Scholar 

  134. DePaoli AM,Higgins LS,Henry RR,Mantzoros C,Dunn FL, INT131-007 Study Group. Can a selective PPARγ modulator improve glycemic control in patients with type 2 diabetes with fewer side effects compared with pioglitazone?. Diabetes Care. 2014;37:1918–23.

    CAS  PubMed  Google Scholar 

  135. Boris M, Kaiser CC, Goldblatt A, Elice MW, Edelson SM, Adams JB, et al. Effect of pioglitazone treatment on behavioral symptoms in autistic children. J Neuroinflamm. 2007;4:3.

    Google Scholar 

  136. Zdravkovic V, Hamilton JK, Daneman D, Cummings EA. Pioglitazone as adjunctive therapy in adolescents with type 1 diabetes. J Pediatr. 2006;149:845–9.

    CAS  PubMed  Google Scholar 

  137. Ghaleiha A, Rasa SM, Nikoo M, Farokhnia M, Mohammadi M-R, Akhondzadeh S. A pilot double-blind placebo-controlled trial of pioglitazone as adjunctive treatment to risperidone: effects on aberrant behavior in children with autism. Psychiatry Res. 2015;229:181–7.

    CAS  PubMed  Google Scholar 

  138. Shah P, Mudaliar S. Pioglitazone: side effect and safety profile. Expert Opin Drug Saf. 2010;9:347–54.

    CAS  PubMed  Google Scholar 

  139. Arulmozhi DK, Dwyer DS, Bodhankar SL. Antipsychotic induced metabolic abnormalities: an interaction study with various PPAR modulators in mice. Life Sci. 2006;79:1865–72.

    CAS  PubMed  Google Scholar 

  140. Herken H, Erdal M, Aydin N, Sengul C, Karadag F, Barlas O, et al. The association of olanzapine-induced weight gain with peroxisome proliferator-activated receptor-gamma2 Pro12Ala polymorphism in patients with schizophrenia. DNA Cell Biol. 2009;28:515–9.

    CAS  PubMed  Google Scholar 

  141. Yang L-H, Chen T-M, Yu S-T, Chen Y-H. Olanzapine induces SREBP-1-related adipogenesis in 3T3-L1 cells. Pharmacol Res. 2007;56:202–8.

    CAS  PubMed  Google Scholar 

  142. Wiklund ED, Catts VS, Catts SV, Ng TF, Whitaker NJ, Brown AJ, et al. Cytotoxic effects of antipsychotic drugs implicate cholesterol homeostasis as a novel chemotherapeutic target. Int J Cancer. 2010;126:28–40.

    CAS  PubMed  Google Scholar 

  143. Guo Q-H, Yang H-J, Wang S-D. Olanzapine inhibits the proliferation and induces the differentiation of glioma stem-like cells through modulating the Wnt signaling pathway in vitro. Eur Rev Med Pharmacol Sci. 2015;19:4455.

    PubMed  Google Scholar 

  144. Wang Y, Huang N, Li H, Liu S, Chen X, Yu S, et al. Promoting oligodendroglial-oriented differentiation of glioma stem cell: a repurposing of quetiapine for the treatment of malignant glioma. Oncotarget. 2017;8:37511–24.

    PubMed  PubMed Central  Google Scholar 

Download references

Author contributions

All authors listed have made contribution to the work, and approved it for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Vallée.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallée, A., Vallée, JN. & Lecarpentier, Y. PPARγ agonists: potential treatment for autism spectrum disorder by inhibiting the canonical WNT/β-catenin pathway. Mol Psychiatry 24, 643–652 (2019). https://doi.org/10.1038/s41380-018-0131-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0131-4

This article is cited by

Search

Quick links