Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NF-κB control of T cell development

A Corrigendum to this article was published on 19 September 2017

This article has been updated

Abstract

The NF-κB signal transduction pathway is best known as a major regulator of innate and adaptive immune responses, yet there is a growing appreciation of its importance in immune cell development, particularly of T lineage cells. In this Review, we discuss how the temporal regulation of NF-κB controls the stepwise differentiation and antigen-dependent selection of conventional and specialized subsets of T cells in response to T cell receptor and costimulatory, cytokine and growth factor signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The canonical and noncanonical NF-κB signal transduction pathway.
Figure 2: NF-κB and early T cell development.
Figure 3: NF-κB and αβ T cell selection and maturation.
Figure 4: TCR activation of NF-κB.

Similar content being viewed by others

Change history

  • 08 May 2017

    In the version of this article initially published, the top middle portion of Figure 4a was incorrect. The MHC and TCR should be on the left, and the B7 and CD28 should be on the right (diagrams and labels for both). The error has been corrected in the HTML and PDF versions of the article.

References

  1. Akashi, K. et al. Lymphoid development from stem cells and the common lymphocyte progenitors. Cold Spring Harb. Symp. Quant. Biol. 64, 1–12 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Boehm, T. Thymus development and function. Curr. Opin. Immunol. 20, 178–184 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Rothenberg, E.V. Transcriptional drivers of the T-cell lineage program. Curr. Opin. Immunol. 24, 132–138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gilmore, T.D. Introduction to NF-κB: player, pathways, perspectives. Oncogene 25, 6680–6684 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Hoffmann, A., Natoli, G. & Ghosh, G. Transcriptional regulation via the NF-κB signaling module. Oncogene 25, 6706–6716 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Oeckinghaus, A. & Ghosh, S. The NF-κB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol. 1, a000034 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Scheidereit, C. IκB kinase complexes: gateways to NF-κB activation and transcription. Oncogene 25, 6685–6705 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Gerondakis, S. et al. Unraveling the complexities of the NF-κB signaling pathway using mouse knockout and transgenic models. Oncogene 25, 6781–6799 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Beg, A.A., Sha, W.C., Bronson, R.T., Ghosh, S. & Baltimore, D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature 376, 167–170 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Li, Q., Van Antwerp, D., Mercurio, F., Lee, K.F. & Verma, I.M. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 284, 321–325 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Perkins, N.D. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol. 8, 49–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Beinke, S. & Ley, S.C. Functions of NF-κB1 and NF-κB2 in immune cell biology. Biochem. J. 382, 393–409 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pasparakis, M., Luedde, T. & Schmidt-Supprian, M. Dissection of the NF-κB signalling cascade in transgenic and knockout mice. Cell Death Differ. 13, 861–872 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Ceredig, R. & Rolink, T. A positive look at double-negative thymocytes. Nat. Rev. Immunol. 2, 888–897 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. von Boehmer, H. Unique features of the pre-T-cell receptor alpha-chain: not just a surrogate. Nat. Rev. Immunol. 5, 571–577 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Hogquist, K.A. Signal strength in thymic selection and lineage commitment. Curr. Opin. Immunol. 13, 225–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. von Boehmer, H. & Melchers, F. Checkpoints in lymphocyte development and autoimmune disease. Nat. Immunol. 11, 14–20 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Taniuchi, I. Transcriptional regulation in helper versus cytotoxic-lineage decision. Curr. Opin. Immunol. 21, 127–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Park, J.H. et al. Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat. Immunol. 11, 257–264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anderson, G. & Takahama, Y. Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol. 33, 256–263 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Josefowicz, S.Z., Lu, L.F. & Rudensky, A.Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Berg, L.J. Signalling through TEC kinases regulates conventional versus innate CD8(+) T-cell development. Nat. Rev. Immunol. 7, 479–485 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Stein, A.J. & Baldwin, A.S. Deletion of the NF-κB subunit p65/RelA in the hematopoietic compartment leads to defects in hematopoietic stem cell function. Blood 121, 5015–5024 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, C. et al. Non-canonical NF-κB signaling regulates hematopoietic stem cell self-renewal and microenvironment interactions. Stem Cells 30, 709–718 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaisho, T. et al. IκB kinase alpha is essential for mature B cell development and function. J. Exp. Med. 193, 417–426 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Senftleben, U., Li, Z.W., Baud, V. & Karin, M. IKKbeta is essential for protecting T cells from TNFalpha-induced apoptosis. Immunity 14, 217–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Makris, C. et al. Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol. Cell 5, 969–979 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, S., La Motte-Mohs, R.N., Rudolph, D., Zuniga-Pflucker, J.C. & Mak, T.W. The role of nuclear factor-κB essential modulator (NEMO) in B cell development and survival. Proc. Natl. Acad. Sci. USA 100, 1203–1208 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schmidt-Supprian, M. et al. NEMO/IKK gamma-deficient mice model incontinentia pigmenti. Mol. Cell 5, 981–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Voll, R.E. et al. NF-κB activation by the pre-T cell receptor serves as a selective survival signal in T cell development. Immunity 13, 677–689 (2000). This report establishes that pre-TCR activation of NF-κB is required to provide a survival signal for developing thymocytes to transition the DN3 checkpoint.

    Article  CAS  PubMed  Google Scholar 

  31. Aifantis, I., Gounari, F., Scorrano, L., Borowski, C. & von Boehmer, H. Constitutive pre-TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF-κB and NFAT. Nat. Immunol. 2, 403–409 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Mandal, M. et al. The BCL2A1 gene as a pre-T cell receptor-induced regulator of thymocyte survival. J. Exp. Med. 201, 603–614 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gerondakis, S. & Siebenlist, U. Roles of the NF-κB pathway in lymphocyte development and function. Cold Spring Harb. Perspect. Biol. 2, a000182 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Boothby, M.R., Mora, A.L., Scherer, D.C., Brockman, J.A. & Ballard, D.W. Perturbation of the T lineage in transgenic mice expressing a constitutive repressor of nuclear factor (NF)- κB. J. Exp. Med. 185, 1897–1907 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hettmann, T., DiDonato, J., Karin, M. & Leiden, J.M. An essential role for nuclear factor κB in promoting double positive thymocyte apoptosis. J. Exp. Med. 189, 145–158 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jimi, E., Strickland, I., Voll, R.E., Long, M. & Ghosh, S. Differential role of the transcription factor NF-κB in selection and survival of CD4+ and CD8+ thymocytes. Immunity 29, 523–537 (2008).This study clarifies the previously confusing findings relating to the roles of NF-κB in the positive and negative selection of conventional T cells.

  37. Dutta, J., Fan, Y., Gupta, N., Fan, G. & Gelinas, C. Current insights into the regulation of programmed cell death by NF-κB. Oncogene 25, 6800–6816 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Strasser, A., Grumont, R.J., Stanley, M.L. & Gerondakis, S. The transcriptional regulator Rel is essential for antigen receptor-mediated stimulation of mature T cells but dispensable for positive and negative selection of thymocytes and T cell apoptosis. Eur. J. Immunol. 29, 928–935 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Lacorazza, H.D., Tucek-Szabo, C., Vasović, L.V., Remus, K. & Nikolich-Zugich, J. Premature TCR alpha beta expression and signaling in early thymocytes impair thymocyte expansion and partially block their development. J. Immunol. 166, 3184–3193 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Terrence, K., Pavlovich, C.P., Matechak, E.O. & Fowlkes, B.J. Premature expression of T cell receptor (TCR)alphabeta suppresses TCRgammadelta gene rearrangement but permits development of gammadelta lineage T cells. J. Exp. Med. 192, 537–548 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baldwin, T.A., Sandau, M.M., Jameson, S.C. & Hogquist, K.A. The timing of TCR alpha expression critically influences T cell development and selection. J. Exp. Med. 202, 111–121 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kovalovsky, D., Pezzano, M., Ortiz, B.D. & Sant'Angelo, D.B. A novel TCR transgenic model reveals that negative selection involves an immediate, Bim-dependent pathway and a delayed, Bim-independent pathway. PLoS ONE 5, e8675 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Akiyama, T., Shinzawa, M. & Akiyama, N. TNF receptor family signaling in the development and functions of medullary thymoc epitheial cells. Front. Immunol. 3, 278– (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Akiyama, T. et al. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29, 423–437 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Hikosaka, Y. et al. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29, 438–450 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Akiyama, T. et al. Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308, 248–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Kajiura, F. et al. NF-κB-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J. Immunol. 172, 2067–2075 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Zhu, M. et al. NF-κB2 is required for the establishment of central tolerance through an Aire-dependent pathway. J. Clin. Invest. 116, 2964–2971 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weih, F. et al. Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-κB/Rel family. Cell 80, 331–340 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Weih, F. et al. p50-NF-κB complexes partially compensate for the absence of RelB: severely increased pathology in p50(−/−)relB(−/−) double-knockout mice. J. Exp. Med. 185, 1359–1370 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, X., Wang, H., Claudio, E., Brown, K. & Siebenlist, U. A role for the IκB family member Bcl-3 in the control of central immunological tolerance. Immunity 27, 438–452 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Proietto, A.I., van Dommelen, S. & Wu, L. The impact of circulating dendritic cells on the development and differentiation of thymocytes. Immunol. Cell Biol. 87, 39–45 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Gugasyan, R. et al. The NF-κB1 transcription factor prevents the intrathymic development of CD8 T cells with memory properties. EMBO J. 31, 692–706 (2012). This work shows that NF-κB1 prevents acquisition of memory cell–like properties by conventional CD8+ T cells during development by controlling different aspects of negative selection.

    Article  CAS  PubMed  Google Scholar 

  54. Intlekofer, A.M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 6, 1236–1244 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Weinreich, M.A., Odumade, O.A., Jameson, S.C. & Hogquist, K.A. T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nat. Immunol. 11, 709–716 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Lio, C.W. & Hsieh, C.S. A two-step process for thymic regulatory T cell development. Immunity 28, 100–111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hsieh, C.S., Lee, H.M. & Lio, C.W. Selection of regulatory T cells in the thymus. Nat. Rev. Immunol. 12, 157–167 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Schmidt-Supprian, M. et al. Mature T cells depend on signaling through the IKK complex. Immunity 19, 377–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Schmidt-Supprian, M. et al. Differential dependence of CD4+CD25+ regulatory and natural-like killer cells on signals leading to NF-κB activation. Proc. Natl. Acad. Sci. USA 101, 4566–4571 (2004). This study is the first that indicates particular T cell subsets selectively exploit different signaling strategies during development to activate NF-κB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Isomura, I. et al. c-Rel is required for the development of thymic Foxp3+ CD4 regulatory T cells. J. Exp. Med. 206, 3001–3014 (2009).References 61–63 show that NF-κB, and particularly c-Rel, is essential for tT reg cell development and induction of Foxp3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Long, M., Park, S.G., Strickland, I., Hayden, M.S. & Ghosh, S. Nuclear factor-κB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 31, 921–931 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Ruan, Q. et al. Development of Foxp3(+) regulatory T cells is driven by the c-Rel enhanceosome. Immunity 31, 932–940 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grigoriadis, G. et al. c-Rel controls multiple discrete steps in the thymic development of Foxp3+ CD4 regulatory T cells. PLoS ONE 6, e26851 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Daley, S.R., Hu, D.Y. & Goodnow, C.C. Helios marks strongly autoreactive CD4+ T cells in two major waves of thymic deletion distinguished by induction of PD-1 or NF-κB. J. Exp. Med. 210, 69–285 (2013). This report identifies a role for c-Rel in counteracting Bim-dependent cell death during the negative selection of CD4+ T cells.

    Article  CAS  Google Scholar 

  66. Grumont, R.J., Rourke, I.J. & Gerondakis, S. Rel-dependent induction of A1 transcription is required to protect B cells from antigen receptor ligation-induced apoptosis. Genes Dev. 13, 400–411 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moran, A.E. et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208, 1279–1289 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Samstein, R.M. et al. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151, 153–166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Oh, H. & Ghosh, S.N.F. -κB: roles and regulation in different CD4(+) T-cell subsets. Immunol. Rev. 252, 41–51 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Schuster, M. et al. IκB(NS) protein mediates regulatory T cell development via induction of the Foxp3 transcription factor. Immunity 37, 998–1008 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Zheng, Y et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010). This report on dissecting the transcriptional control of Foxp3, identifies a novel control region required for its developmental induction that can bind c-Rel.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee, A.J. et al. CARMA1 regulation of regulatory T cell development involves modulation of interleukin-2 receptor signaling. J. Biol. Chem. 285, 15696–15703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Loizou, L., Andersen, K.G. & Betz, A.G. Foxp3 interacts with c-Rel to mediate NF-κB repression. PLoS ONE 6, e18670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bettelli, E., Dastrange, M. & Oukka, M. Foxp3 interacts with nuclear factor of activated T cells and NF-κB to repress cytokine gene expression and effector functions of T helper cells. Proc. Natl. Acad. Sci. USA 102, 5138–5143 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chang, J.H. et al. Ubc13 maintains the suppressive function of regulatory T cells and prevents their conversion into effector-like T cells. Nat. Immunol. 13, 481–490 (2012). This study provides strong evidence that NF-κB activity is essential in maintaining the functional integrity of T reg cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ferreira, L.M. Gammadelta T cells: innately adaptive immune cells? Int. Rev. Immunol. 32, 223–248 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Yamane, H. & Paul, W.E. Cytokines of the γ(c) family control CD4+ T cell differentiation and function. Nat. Immunol. 13, 1037–1044 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jensen, K.D. et al. Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity 29, 90–100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ribot, J.C. et al. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat. Immunol. 10, 427–436 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Silva-Santos, B., Pennington, D.J. & Hayday, A.C. Lymphotoxin-mediated regulation of gammadelta cell differentiation by alphabeta T cell progenitors. Science 307, 925–928 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Powolny-Budnicka, I. et al. RelA and RelB transcription factors in distinct thymocyte populations control lymphotoxin-dependent interleukin-17 production in γδ T cells. Immunity 34, 364–374 (2011). This study shows that the canonical and noncanonical pathways operating in different thymocyte populations are needed for the normal development of IL-17 producing γδ T cells.

    Article  CAS  PubMed  Google Scholar 

  82. Yamamoto, H., Kishimoto, T. & Minamoto, S. NF-κB activation in CD27 signaling: involvement of TNF receptor-associated factors in its signaling and identification of functional region of CD27. J. Immunol. 161, 4753–4759 (1998).

    CAS  PubMed  Google Scholar 

  83. Godfrey, D.I. & Berzins, S.P. Control points in NKT-cell development. Nat. Rev. Immunol. 7, 505–518 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Kovalovsky, D. et al. The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol. 9, 1055–1064 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Godfrey, D.I., Stankovic, S. & Baxter, A.G. Raising the NKT cell family. Nat. Immunol. 11, 197–206 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Stanic, A.K. et al. NF-κB controls cell fate specification, survival, and molecular differentiation of immunoregulatory natural T lymphocytes. J. Immunol. 172, 2265–2273 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Sivakumar, V., Hammond, K.J., Howell, N., Pfeffer, K. & Weih, F. Differential requirement for Rel/nuclear factor kappa B family members in natural killer T cell development. J. Exp. Med. 197, 1613–1621 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stankovic, S. et al. Distinct roles in NKT cell maturation and function for the different transcription factors in the classical NF-κB pathway. Immunol. Cell Biol. 89, 294–303 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Vallabhapurapu, S. et al. Rel/NF-κB family member RelA regulates NK1.1- to NK1.1+ transition as well as IL-15-induced expansion of NKT cells. Eur. J. Immunol. 38, 3508–3519 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Michel, M.L. et al. Critical role of ROR-γt in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc. Natl. Acad. Sci. USA 105, 19845–19850 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lee, Y.J., Holzapfel, K.L., Zhu, J., Jameson, S.C. & Hogquist, K.A. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol. 14, 1146–1154 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Das, J. et al. A critical role for NF-κB in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nat. Immunol. 2, 45–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Ruan, Q. et al. The Th17 immune response is controlled by the Rel-RORγ-RORγ T transcriptional axis. J. Exp. Med. 208, 2321–2333 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen, G. et al. The NF-κB transcription factor c-Rel is required for Th17 effector cell development in experimental autoimmune encephalomyelitis. J. Immunol. 187, 4483–4491 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Cheng, J., Montecalvo, A. & Kane, L.P. Regulation of NF-κB induction by TCR/CD28. Immunol. Res. 50, 113–117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Paul, S. & Schaefer, B.C. A new look at T cell receptor signaling to nuclear factor-κB. Trends Immunol. 34, 269–281 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kruisbeek, A.M. et al. Branching out to gain control: how the pre-TCR is linked to multiple functions. Immunol. Today 21, 637–644 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Finlay, D.K. et al. Temporal differences in the dependency on phosphoinositide-dependent kinase 1 distinguish the development of invariant Valpha14 NKT cells and conventional T cells. J. Immunol. 185, 5973–5982 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Gupta, S. et al. Differential requirement of PKC-theta in the development and function of natural regulatory T cells. Mol. Immunol. 46, 213–224 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Molinero, L.L. et al. CARMA1 controls an early checkpoint in the thymic development of FoxP3+ regulatory T cells. J. Immunol. 182, 6736–6743 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Sato, S. et al. TAK1 is indispensable for development of T cells and prevention of colitis by the generation of regulatory T cells. Int. Immunol. 18, 1405–1411 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Stanic, A.K. et al. The ontogeny and function of Va14Ja18 natural T lymphocytes require signal processing by protein kinase C theta and NF-κB. J. Immunol. 172, 4667–4671 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Thome, M. CARMA1, Bcl-10 and Malt1 in lymphocyte development and activation. Nat. Rev. Immunol. 4, 348–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Liu, H.H., Xie, M., Schneider, M.D. & Chen, Z.J. Essential role of TAK1 in thymocyte development and activation. Proc. Natl. Acad. Sci. USA 103, 11677–11682 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kingeter, L.M. & Schaefer, B.C. Loss of protein kinase C theta, Bcl10, or Malt1 selectively impairs proliferation and NF-κB activation in the CD4+ T cell subset. J. Immunol. 181, 6244–6254 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Chuang, H.C. et al. The kinase GLK controls autoimmunity and NF-κB signaling by activating the kinase PKC-theta in T cells. Nat. Immunol. 12, 1113–1118 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Health and Medical Research Council of Australia (program grant 1016701 and project grant 1029822 to S.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Gerondakis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerondakis, S., Fulford, T., Messina, N. et al. NF-κB control of T cell development. Nat Immunol 15, 15–25 (2014). https://doi.org/10.1038/ni.2785

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2785

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing