Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas

Abstract

The most common pediatric brain tumors are low-grade gliomas (LGGs). We used whole-genome sequencing to identify multiple new genetic alterations involving BRAF, RAF1, FGFR1, MYB, MYBL1 and genes with histone-related functions, including H3F3A and ATRX, in 39 LGGs and low-grade glioneuronal tumors (LGGNTs). Only a single non-silent somatic alteration was detected in 24 of 39 (62%) tumors. Intragenic duplications of the portion of FGFR1 encoding the tyrosine kinase domain (TKD) and rearrangements of MYB were recurrent and mutually exclusive in 53% of grade II diffuse LGGs. Transplantation of Trp53-null neonatal astrocytes expressing FGFR1 with the duplication involving the TKD into the brains of nude mice generated high-grade astrocytomas with short latency and 100% penetrance. FGFR1 with the duplication induced FGFR1 autophosphorylation and upregulation of the MAPK/ERK and PI3K pathways, which could be blocked by specific inhibitors. Focusing on the therapeutically challenging diffuse LGGs, our study of 151 tumors has discovered genetic alterations and potential therapeutic targets across the entire range of pediatric LGGs and LGGNTs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinicopathological characteristics and genetic alterations in tumors from series 1 examined by whole-genome sequencing or RNA-seq.
Figure 2: Genetic alterations in supratentorial LGGs.
Figure 3: Genetic alterations in infratentorial LGGs.
Figure 4: Genetic alterations in LGGNTs.
Figure 5: FGFR1 aberrations in LGGs and LGGNTs.
Figure 6: MYB and MYBL1 aberrations in diffusely infiltrating LGGs.
Figure 7: Activation of MAPK/ERK and PI3K pathways in LGGs and LGGNTs with FGFR1, MYB and BRAF abnormalities.
Figure 8: TKD-duplicated FGFR1 in neonatal astrocytes generates gliomas in vivo.

Similar content being viewed by others

References

  1. Armstrong, G.T. et al. Survival and long-term health and cognitive outcomes after low-grade glioma. Neuro-oncol. 13, 223–234 (2011).

    PubMed  Google Scholar 

  2. Arora, R.S. et al. Age-incidence patterns of primary CNS tumors in children, adolescents, and adults in England. Neuro-oncol. 11, 403–413 (2009).

    PubMed  PubMed Central  Google Scholar 

  3. Qaddoumi, I., Sultan, I. & Gajjar, A. Outcome and prognostic features in pediatric gliomas: a review of 6212 cases from the Surveillance, Epidemiology, and End Results database. Cancer 115, 5761–5770 (2009).

    PubMed  Google Scholar 

  4. Bouffet, E. et al. Phase II study of weekly vinblastine in recurrent or refractory pediatric low-grade glioma. J. Clin. Oncol. 30, 1358–1363 (2012).

    CAS  PubMed  Google Scholar 

  5. Duffner, P.K., Cohen, M.E., Myers, M.H. & Heise, H.W. Survival of children with brain tumors: SEER Program, 1973–1980. Neurology 36, 597–601 (1986).

    CAS  PubMed  Google Scholar 

  6. Fisher, P.G. et al. Outcome analysis of childhood low-grade astrocytomas. Pediatr. Blood Cancer 51, 245–250 (2008).

    PubMed  Google Scholar 

  7. Gajjar, A. et al. Low-grade astrocytoma: a decade of experience at St. Jude Children's Research Hospital. J. Clin. Oncol. 15, 2792–2799 (1997).

    CAS  PubMed  Google Scholar 

  8. Gnekow, A.K. et al. Long-term follow-up of the multicenter, multidisciplinary treatment study HIT-LGG-1996 for low-grade glioma in children and adolescents of the German Speaking Society of Pediatric Oncology and Hematology. Neuro-oncol. 14, 1265–1284 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Merchant, T.E., Conklin, H.M., Wu, S., Lustig, R.H. & Xiong, X. Late effects of conformal radiation therapy for pediatric patients with low-grade glioma: prospective evaluation of cognitive, endocrine, and hearing deficits. J. Clin. Oncol. 27, 3691–3697 (2009).

    PubMed  PubMed Central  Google Scholar 

  10. Stokland, T. et al. A multivariate analysis of factors determining tumor progression in childhood low-grade glioma: a population-based cohort study (CCLG CNS9702). Neuro-oncol. 12, 1257–1268 (2010).

    PubMed  PubMed Central  Google Scholar 

  11. Forshew, T. et al. Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J. Pathol. 218, 172–181 (2009).

    CAS  PubMed  Google Scholar 

  12. Jones, D.T. et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 68, 8673–8677 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pfister, S. et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J. Clin. Invest. 118, 1739–1749 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sievert, A.J. et al. Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism–based genotype arrays results in a novel BRAF fusion gene. Brain Pathol. 19, 449–458 (2009).

    CAS  PubMed  Google Scholar 

  15. Listernick, R., Charrow, J. & Gutmann, D.H. Intracranial gliomas in neurofibromatosis type 1. Am. J. Med. Genet. 89, 38–44 (1999).

    CAS  PubMed  Google Scholar 

  16. Listernick, R., Ferner, R.E., Liu, G.T. & Gutmann, D.H. Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann. Neurol. 61, 189–198 (2007).

    CAS  PubMed  Google Scholar 

  17. DeClue, J.E. et al. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69, 265–273 (1992).

    CAS  PubMed  Google Scholar 

  18. Dias-Santagata, D. et al. BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLoS ONE 6, e17948 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin, A. et al. BRAF alterations in primary glial and glioneuronal neoplasms of the central nervous system with identification of 2 novel KIAA1549:BRAF fusion variants. J. Neuropathol. Exp. Neurol. 71, 66–72 (2012).

    CAS  PubMed  Google Scholar 

  20. Schindler, G. et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol. 121, 397–405 (2011).

    CAS  PubMed  Google Scholar 

  21. Tatevossian, R.G. et al. MAPK pathway activation and the origins of pediatric low-grade astrocytomas. J. Cell Physiol. 222, 509–514 (2010).

    CAS  PubMed  Google Scholar 

  22. Tatevossian, R.G. et al. MYB upregulation and genetic aberrations in a subset of pediatric low-grade gliomas. Acta Neuropathol. 120, 731–743 (2010).

    PubMed  PubMed Central  Google Scholar 

  23. Stephens, P.J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Louis, D.N. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114, 97–109 (2007).

    PubMed  PubMed Central  Google Scholar 

  25. Pollack, I.F. The role of surgery in pediatric gliomas. J. Neurooncol. 42, 271–288 (1999).

    CAS  PubMed  Google Scholar 

  26. Wisoff, J.H. et al. Primary neurosurgery for pediatric low-grade gliomas: a prospective multi-institutional study from the Children's Oncology Group. Neurosurgery 68, 1548–1554, discussion 1554–1555 (2011).

    PubMed  Google Scholar 

  27. Louis, D.N. Molecular pathology of malignant gliomas. Annu. Rev. Pathol. 1, 97–117 (2006).

    CAS  PubMed  Google Scholar 

  28. Ohgaki, H. & Kleihues, P. Genetic profile of astrocytic and oligodendroglial gliomas. Brain Tumor Pathol. 28, 177–183 (2011).

    CAS  PubMed  Google Scholar 

  29. Riemenschneider, M.J., Jeuken, J.W., Wesseling, P. & Reifenberger, G. Molecular diagnostics of gliomas: state of the art. Acta Neuropathol. 120, 567–584 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cin, H. et al. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol. 121, 763–774 (2011).

    CAS  PubMed  Google Scholar 

  31. Jones, D.T. et al. Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 28, 2119–2123 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ciesielski, M.J. & Fenstermaker, R.A. Oncogenic epidermal growth factor receptor mutants with tandem duplication: gene structure and effects on receptor function. Oncogene 19, 810–820 (2000).

    CAS  PubMed  Google Scholar 

  33. Lin, W.M. et al. Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res. 68, 664–673 (2008).

    CAS  PubMed  Google Scholar 

  34. Rand, V. et al. Sequence survey of receptor tyrosine kinases reveals mutations in glioblastomas. Proc. Natl. Acad. Sci. USA 102, 14344–14349 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Singh, D. et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 337, 1231–1235 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, F., Zhai, Y.P., Tang, Y.M., Wang, L.P. & Wan, P.J. Identification of a novel partner gene, TPR, fused to FGFR1 in 8p11 myeloproliferative syndrome. Genes Chromosom. Cancer 51, 890–897 (2012).

    CAS  PubMed  Google Scholar 

  37. Turner, N. et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 70, 2085–2094 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Turner, N. & Grose, R. Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer 10, 116–129 (2010).

    CAS  PubMed  Google Scholar 

  39. Wang, M. et al. Monomorphous angiocentric glioma: a distinctive epileptogenic neoplasm with features of infiltrating astrocytoma and ependymoma. J. Neuropathol. Exp. Neurol. 64, 875–881 (2005).

    PubMed  Google Scholar 

  40. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).

    CAS  PubMed  Google Scholar 

  41. Sturm, D. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22, 425–437 (2012).

    CAS  PubMed  Google Scholar 

  42. Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Müller, W., Afra, D. & Schroder, R. Supratentorial recurrences of gliomas. Morphological studies in relation to time intervals with astrocytomas. Acta Neurochir. (Wien) 37, 75–91 (1977).

    Google Scholar 

  44. Okamoto, Y. et al. Population-based study on incidence, survival rates, and genetic alterations of low-grade diffuse astrocytomas and oligodendrogliomas. Acta Neuropathol. 108, 49–56 (2004).

    PubMed  Google Scholar 

  45. Peraud, A., Kreth, F.W., Wiestler, O.D., Kleihues, P. & Reulen, H.J. Prognostic impact of TP53 mutations and P53 protein overexpression in supratentorial WHO grade II astrocytomas and oligoastrocytomas. Clin. Cancer Res. 8, 1117–1124 (2002).

    CAS  PubMed  Google Scholar 

  46. Pollack, I.F., Claassen, D., al-Shboul, Q., Janosky, J.E. & Deutsch, M. Low-grade gliomas of the cerebral hemispheres in children: an analysis of 71 cases. J. Neurosurg. 82, 536–547 (1995).

    CAS  PubMed  Google Scholar 

  47. Jones, D.T. et al. Adult grade II diffuse astrocytomas are genetically distinct from and more aggressive than their paediatric counterparts. Acta Neuropathol. 121, 753–761 (2011).

    PubMed  Google Scholar 

  48. Korshunov, A. et al. Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol. 118, 401–405 (2009).

    CAS  PubMed  Google Scholar 

  49. Parsons, D.W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. von Deimling, A., Korshunov, A. & Hartmann, C. The next generation of glioma biomarkers: MGMT methylation, BRAF fusions and IDH1 mutations. Brain Pathol. 21, 74–87 (2011).

    CAS  PubMed  Google Scholar 

  51. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ohgaki, H. et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res. 64, 6892–6899 (2004).

    CAS  PubMed  Google Scholar 

  53. Ohgaki, H. & Kleihues, P. Genetic pathways to primary and secondary glioblastoma. Am. J. Pathol. 170, 1445–1453 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bettegowda, C. et al. Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science 333, 1453–1455 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yip, S. et al. Concurrent CIC mutations, IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers. J. Pathol. 226, 7–16 (2012).

    CAS  PubMed  Google Scholar 

  56. Flaherty, K.T. et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl. J. Med. 367, 107–114 (2012).

    CAS  PubMed  Google Scholar 

  57. Katoh, M. Genetic alterations of FGF receptors: an emerging field in clinical cancer diagnostics and therapeutics. Expert Rev. Anticancer Ther. 10, 1375–1379 (2010).

    CAS  PubMed  Google Scholar 

  58. Ren, M., Qin, H., Ren, R. & Cowell, J.K. Ponatinib suppresses the development of myeloid and lymphoid malignancies associated with FGFR1 abnormalities. Leukemia 27, 32–40 (2013).

    CAS  PubMed  Google Scholar 

  59. Zhang, J. et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481, 329–334 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, J. et al. CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nat. Methods 8, 652–654 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. McPherson, A. et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput. Biol. 7, e1001138 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mullighan, C.G. et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471, 235–239 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, J. et al. SNPdetector: a software tool for sensitive and accurate SNP detection. PLoS Comput. Biol. 1, e53 (2005).

    PubMed  PubMed Central  Google Scholar 

  66. Downing, J.R. et al. The Pediatric Cancer Genome Project. Nat. Genet. 44, 619–622 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Dees, N.D. et al. MuSiC: identifying mutational significance in cancer genomes. Genome Res. 22, 1589–1598 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Edmonson, M.N. et al. Bambino: a variant detector and alignment viewer for next-generation sequencing data in the SAM/BAM format. Bioinformatics 27, 865–866 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mullighan, C.G. Single nucleotide polymorphism microarray analysis of genetic alterations in cancer. Methods Mol. Biol. 730, 235–258 (2011).

    CAS  PubMed  Google Scholar 

  70. Persons, D.A. et al. Enforced expression of the GATA-2 transcription factor blocks normal hematopoiesis. Blood 93, 488–499 (1999).

    CAS  PubMed  Google Scholar 

  71. Bajenaru, M.L. et al. Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol. Cell Biol. 22, 5100–5113 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Endersby, R., Zhu, X., Hay, N., Ellison, D.W. & Baker, S.J. Nonredundant functions for Akt isoforms in astrocyte growth and gliomagenesis in an orthotopic transplantation model. Cancer Res. 71, 4106–4116 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29, 418–425 (2001).

    CAS  PubMed  Google Scholar 

  74. Ellison, D.W. et al. Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J. Clin. Oncol. 29, 1400–1407 (2011).

    PubMed  Google Scholar 

  75. Tang, B. et al. Characterization of signal transduction through the TCR-ζ chain following T cell stimulation with analogue peptides of type II collagen 260–267. J. Immunol. 160, 3135–3142 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Evans for advice and support and P. Nagahawatte for submitting the genomic data to EBI. We are grateful for support from Anatomic Pathology and the Hartwell Center of Biotechnology and Bioinformatics at St. Jude Children's Research Hospital and from Beckman Coulter Genomics. We acknowledge the St. Jude Children's Research Hospital tissue resource facility, from which tissue samples were obtained in accordance with institutional review board approval for the Pediatric Cancer Genome Project. This work was supported by the St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project and the American Lebanese Syrian Associated Charities (ALSAC) of St. Jude Children's Research Hospital and by a grant from the US National Institutes of Health (NIH; CA096832).

Author information

Authors and Affiliations

Consortia

Contributions

D.W.E., J.Z., R.G.T., B.T., L.D., R.K., D.S., R.J.G., E.R.M., R.K.W., J.R.D. and S.J.B. designed experiments or supervised research. I.Q., F.A.B., S.S. and A.G. provided samples or clinical data. D.W.E. undertook all pathological evaluations. J.Z., G.W., R.G.T., J.D.D., B.T., W.O., C.P., C.P.M., C.L., C.K., L.D., M.P., R.L., R.H., X.C., E.H., P.N., M.R., K.B., J.C., J.B., J.M., G.S., Y.L., L.W., J.W., J.E., D.Z., R.S.F., L.L.F., B.V., H.L.M., C.T., C.G.M., R.K., D.S., S.J.B. and D.W.E. performed experiments, analyzed data or prepared tables and figures. D.J.D. and K.O. contributed reagents, materials or analysis tools. D.W.E. and J.Z. wrote the manuscript, with contributions from G.W., R.G.T. and S.J.B.

Corresponding author

Correspondence to David W Ellison.

Ethics declarations

Competing interests

The author declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Tables 1–11 and Supplementary Note (PDF 12442 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

the St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45, 602–612 (2013). https://doi.org/10.1038/ng.2611

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2611

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing