Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2

Abstract

RNA editing by site-selective deamination of adenosine to inosine1,2 alters codons3,4 and splicing5 in nuclear transcripts6, and therefore protein function. ADAR2 (refs 7, 8) is a candidate mammalian editing enzyme that is widely expressed in brain and other tissues7, but its RNA substrates are unknown. Here we have studied ADAR2-mediated RNA editing by generating mice that are homozygous for a targeted functional null allele. Editing in ADAR2-/- mice was substantially reduced at most of 25 positions in diverse transcripts3,4,5,6; the mutant mice became prone to seizures and died young. The impaired phenotype appeared to result entirely from a single underedited position, as it reverted to normal when both alleles for the underedited transcript were substituted with alleles encoding the edited version exonically9. The critical position specifies an ion channel determinant10, the Q/R site3,6, in AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate) receptor10 GluR-B pre-messenger RNA. We conclude that this transcript is the physiologically most important substrate of ADAR2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted ADAR2 allele (Mouse Genome Database symbol, Adarb1 ) and transcript.
Figure 2: GluR-B and GluR-A transcript analyses.
Figure 3: GluR-B and GluR-A protein analyses.
Figure 4: Survival of ADAR2-/- mice.

Similar content being viewed by others

References

  1. Bass, B. L. RNA editing. An I for editing. Curr. Biol. 5, 598–600 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Rueter, S. & Emeson, R. in Modification and Editing of RNA (eds Grosjean, H. & Benne, R.) 343–361 (ASM, Washington DC, 1998).

    Book  Google Scholar 

  3. Seeburg, P. H., Higuchi, M. & Sprengel, R. RNA editing of brain glutamate receptor channels: mechanism and physiology. Brain Res. Rev. 26, 217– 229 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Burns, C. M. et al. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387, 303– 308 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Rueter, S. M., Dawson, T. R. & Emeson, R. B. Regulation of alternative splicing by RNA editing. Nature 399, 75–79 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Higuchi, M. et al. RNA editing of AMPA receptor subunit GluR-B: A base-paired intron–exon structure determines position and efficiency. Cell 75, 1361–1370 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  7. Melcher, T. et al. A mammalian RNA editing enzyme. Nature 379, 460–464 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Bass, B. L. et al. A standardized nomenclature for adenosine deaminases that act on RNA. RNA 3, 947– 949 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kask, K. et al. The AMPA receptor subunit GluR-B in its Q/R site-unedited form is not essential for brain development and function. Proc. Natl Acad. Sci. USA 95, 13777–13782 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S. F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

    CAS  PubMed  Google Scholar 

  11. Brusa, R. et al. Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270, 1677–1680 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Feldmeyer, D. et al. Neurological dysfunctions in mice expressing different levels of the Q/R site-unedited AMPAR subunit GluR-B. Nature Neurosci. 2, 57–64 (1999 ).

    Article  CAS  PubMed  Google Scholar 

  13. Melcher, T. et al. RED2, a brain-specific member of the RNA-specific adenosine deaminase family. J. Biol. Chem. 271, 31795 –31798 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Maas, S. et al. Different structural and enzymatic requirements for RNA editing in glutamate receptor pre-mRNAs. J. Biol. Chem. 271 , 12221–12226 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Lai, F., Chen, C. X., Carter, K. C. & Nishikura, K. Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases. Mol. Cell. Biol. 17, 2413–2424 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Villard, L., Tassone, F., Haymowicz, M., Welborn, R. & Gardiner, K. Map location, genomic organization and expression patterns of the human RED1 RNA editase. Somat. Cell. Mol. Gen. 23, 135–145 ( 1997).

    Article  CAS  Google Scholar 

  17. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl Acad. Sci. USA 90, 8424–8428 ( 1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dabiri, G. A., Lai, F., Drakas, R. A. & Nishikura, K. Editing of GluR-B ion channel RNA in vitro by recombinant double-stranded RNA adenosine deaminase. EMBO J. 15, 34–45 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zamanillo, D. et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284, 1805–1811 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Jia, Z. et al. Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 17, 945–956 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  21. Herb, A., Higuchi, M., Sprengel, R. & Seeburg, P. H. Q/R site editing in kainate receptor GluR5 and GluR6 pre-mRNAs requires distant intronic sequences. Proc. Natl Acad. Sci. USA 93, 1875–880 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reenan, R. A., Hanrahan, C. J. & Ganetzky, B. The mlenapts RNA helicase mutation in Drosophila results in a splicing catastrophe of the para Na+ channel transcript in a region of RNA editing. Neuron 25, 139–149 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Geiger, J. R. P. et al. Relative abundance of subunit mRNAs determinates gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193– 204 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Wisden, W. & Morris, B. J. in In Situ Protocols for the Brain (eds Wisden, W. & Morris, B. J. 9–30 (Academic, London, 1994).

    Google Scholar 

  25. Wang, Y., Zeng, Y., Murray, J. M. & Nishikura, K. Genomic organization and chromosomal localization of the human dsRNA adenosine deaminase gene: the enzyme for glutamate-activated ion channel RNA editing. J. Mol. Biol. 254, 184–195 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Köhler, M., Kornau, H. -C. & Seeburg, P. H. The gene for the principal AMPA receptor subunit GluR-B: organization and sequences for alternatively spliced and edited transcripts. J. Biol. Chem. 269, 17367– 17370 (1994).

    PubMed  Google Scholar 

  27. Lomeli, H. et al. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266, 1709– 1713 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Wenthold for the antibody to GluR-B; A. Nagy for the murine embryonic stem cell line R1; K. Kask for help with GluR-BR mice; F. Zimmermann for blastocyst injection; S. Grünewald and H. Grosskurth for DNA sequencing; U. Amtmann for in situ hybridization; and H. Avci, C. Faul and C. Baust for technical help. This work was supported, in part, by the Deutsche Forschungsgemeinschaft, the Human Frontier Science Program and the Bristol-Myers Squibb foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Seeburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higuchi, M., Maas, S., Single, F. et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78–81 (2000). https://doi.org/10.1038/35017558

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35017558

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing