Abstract
Our earlier in vitro and in vivo studies have revealed that the phytosterol, pentalinonsterol (cholest-4,20,24-trien-3-one) (PEN), isolated from the roots of Pentalinon andrieuxii, possesss immunomodulatory properties in macrophages and dendritic cells. Leishmaniasis, caused by the infection of Leishmania spp. (a protozoan parasite), is emerging as the second-leading cause of mortality among the tropical diseases and there is an unmet need for a pharmacological intervention of leishmaniasis. Given the beneficial immunomodulatory actions and lipophilic properties of PEN, the objective of this study was to elucidate the mechanism(s) of action of the immunomodulatory action(s) of PEN in macrophages through the modulation of phospholipase A2 (PLA2) activity that might be crucial in the antileishmanial action of PEN. Therefore, in this study, we investigated whether PEN would modulate the activity of PLA2 in RAW 264.7 macrophages and mouse bone marrow-derived primary macrophages (BMDMs) in vitro and further determined how the upstream PLA2 activation would regulate the downstream cytokine release in the macrophages. Our current results demonstrated that (i) PEN induced PLA2 activation (arachidonic acid release) in a dose- and time-dependent manner that was regulated upstream by the mitogen-activated protein kinases (MAPKs); (ii) the PEN-induced activation of PLA2 was attenuated by the cPLA2-specific pharmacological inhibitors; and (iii) the cPLA2-specific pharmacological inhibitors attenuated the release of inflammatory cytokines from the macrophages. For the first time, our current study demonstrated that PEN exhibited its immunomodulatory actions through the activation of cPLA2 in the macrophages, which potentially could be used in the development of a pharmacological intervention against leishmaniasis.
Similar content being viewed by others
Abbreviations
- AA :
-
arachidonic acid
- BMDM :
-
bone marrow-derive macrophages
- COX :
-
cyclooxyginases
- cPLA2 :
-
cytosolic PLA2
- EDTA :
-
ethylenediaminetetraacetic acid
- EGTA :
-
ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid
- ERK :
-
extracellular signal-regulated kinase
- GMCSF :
-
granulocyte-macrophage colony-stimulating factor
- LOX :
-
lipoxygenases
- MAPKs :
-
mitogen-activated protein kinases
- PARE :
-
Pentalinon andrieuxii root extract
- PEN :
-
pentalinonsterol
- PLA 2 :
-
phospholipase A2
- PGs :
-
prostaglandins
- PUFAp :
-
poly unsaturated fatty acids
- TBST :
-
Tris-buffered saline.
References
2011. Working to overcome the global impact of neglected tropical diseases—summary. The Weekly Epidemiological Record, 86, 113–120
Mashayekhi-Ghoyonlo, V., Kiafar, B., Rohani, M., Esmaeili, H., & Erfanian-Taghvaee, M. R. (2015). Correlation between socioeconomic status and clinical course in patients with cutaneous leishmaniasis. Journal of Cutaneous Medicine and Surgery, 19, 40–44
Varikuti, S., Oghumu, S., Saljoughian, N., Pioso, M. S., Sedmak, B. E., Khamesipour, A., & Satoskar, A. R. (2017). Topical treatment with nanoliposomal Amphotericin B reduces early lesion growth but fails to induce cure in an experimental model of cutaneous leishmaniasis caused by Leishmania mexicana. Acta Tropica, 173, 102–108
Veiga, J. P., Rosa, T. T., Kimachi, T., Wolff, E. R., Sampaio, R. N., Gagliardi, A. R., Junqueira, Jr, L. F., Costa, J. M., & Marsden, P. D. (1985). Renal function in patients with mucocutaneous leishmaniasis treated with pentavalent antimony compounds. Revista do Instituto de Medicina Tropical de Sao Paulo, 27, 298–302
Sundar, S., More, D. K., Singh, M. K., Singh, V. P., Sharma, S., Makharia, A., Kumar, P. C., & Murray, H. W. (2000). Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clinical Infectious Diseases, 31, 1104–1107
Lira, R., Sundar, S., Makharia, A., Kenney, R., Gam, A., Saraiva, E., & Sacks, D. (1999). Evidence that the high incidence of treatment failures in Indian kala-azar is due to the emergence of antimony-resistant strains of Leishmania donovani. The Journal of Infectious Diseases, 180, 564–567
Polonio, T., & Efferth, T. (2008). Leishmaniasis: drug resistance and natural products (review). International Journal of Molecular Medicine, 22, 277–286
Oghumu, S., Varikuti, S., Saljoughian, N., Terrazas, C., Huntsman, A. C., Parinandi, N. L., Fuchs, J. R., Kinghorn, A. D., & Satoskar, A. R. (2017). Pentalinonsterol, a constituent of Pentalinon andrieuxii, possesses potent immunomodulatory activity and primes T cell immune responses. Journal of Natural Products, 80, 2515–2523
Lezama-Davila, C. M., Isaac-Marquez, A. P., Zamora-Crescencio, P., Uc-Encalada Mdel, R., Justiniano-Apolinar, S. Y., del Angel-Robles, L., Satoskar, A., & Hernandez-Rivero, L. (2007). Leishmanicidal activity of Pentalinon andrieuxii. Fitoterapia, 78, 255–257
Lezama-Davila, C. M., Pan, L., Isaac-Marquez, A. P., Terrazas, C., Oghumu, S., Isaac-Marquez, R., Pech-Dzib, M. Y., Barbi, J., Calomeni, E., Parinandi, N., Kinghorn, A. D., & Satoskar, A. R. (2014). Pentalinon andrieuxii root extract is effective in the topical treatment of cutaneous leishmaniasis caused by Leishmania mexicana. Phytotherapy Research, 28, 909–916
Gupta, G., Peine, K. J., Abdelhamid, D., Snider, H., Shelton, A. B., Rao, L., Kotha, S. R., Huntsman, A. C., Varikuti, S., Oghumu, S., Naman, C. B., Pan, L., Parinandi, N. L., Papenfuss, T. L., Kinghorn, A. D., Bachelder, E. M., Ainslie, K. M., Fuchs, J. R., & Satoskar, A. R. (2015). A novel sterol isolated from a plant used by Mayan traditional healers is effective in treatment of visceral leishmaniasis caused by Leishmania donovani. ACS Infectious Diseases, 1, 497–506
Burke, J. E., & Dennis, E. A. (2009). Phospholipase A2 structure/function, mechanism, and signaling. Journal of Lipid Research, 50(Suppl), S237–242
Brown, W. J., Chambers, K., & Doody, A. (2003). Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic, 4, 214–221
Mazerik, J. N., Hagele, T., Sherwani, S., Ciapala, V., Butler, S., Kuppusamy, M. L., Hunter, M., Kuppusamy, P., Marsh, C. B., & Parinandi, N. L. (2007). Phospholipase A2 activation regulates cytotoxicity of methylmercury in vascular endothelial cells. International Journal of Toxicology, 26, 553–569
Touqui, L., & Alaoui-El-Azher, M. (2001). Mammalian secreted phospholipases A2 and their pathophysiological significance in inflammatory diseases. Current Molecular Medicine, 1, 739–754
Hirabayashi, T., Murayama, T., & Shimizu, T. (2004). Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biological & Pharmaceutical Bulletin, 27, 1168–1173
Kotha, S. R., Piper, M. G., Patel, R. B., Sliman, S., Malireddy, S., Zhao, L., Baran, C. P., Nana-Sinkam, P. S., Wewers, M. D., Romberger, D., Marsh, C. B., & Parinandi, N. L. (2013). Phospholipase A(2) activation by poultry particulate matter is mediated through extracellular signal-regulated kinase in lung epithelial cells: regulation of interleukin-8 release. Cell Biochemistry and Biophysics, 67, 415–429
Oghumu, S., Gupta, G., Snider, H. M., Varikuti, S., Terrazas, C. A., Papenfuss, T. L., Kaplan, M. H., & Satoskar, A. R. (2014). STAT4 is critical for immunity but not for antileishmanial activity of antimonials in experimental visceral leishmaniasis. European Journal of Immunology, 44, 450–459
Pan, L., Lezama-Davila, C. M., Isaac-Marquez, A. P., Calomeni, E. P., Fuchs, J. R., Satoskar, A. R., & Kinghorn, A. D. (2012). Sterols with antileishmanial activity isolated from the roots of Pentalinon andrieuxii. Phytochemistry, 82, 128–135
Chen, J., Guan, S. M., Sun, W., & Fu, H. (2016). Melittin, the major pain-producing substance of bee venom. Neuroscience Bulletin, 32, 265–272
Hassid, A., & Levine, L. (1977). Stimulation of phospholipase activity and prostaglandin biosynthesis by melittin in cell culture and in vivo. Research Communications in Chemical Pathology and Pharmacology, 18, 507–517
Sharma, S. V. (1993). Melittin-induced hyperactivation of phospholipase A2 activity and calcium influx in ras-transformed cells. Oncogene, 8, 939–947
Rosa, A. O., & Rapoport, S. I. (2009). Intracellular- and extracellular-derived Ca(2+) influence phospholipase A(2)-mediated fatty acid release from brain phospholipids. Biochimica et Biophysica Acta, 1791, 697–705
Scott, D. L., White, S. P., Otwinowski, Z., Yuan, W., Gelb, M. H., & Sigler, P. B. (1990). Interfacial catalysis: the mechanism of phospholipase A2. Science, 250, 1541–1546
Kudo, I., & Murakami, M. (2002). Phospholipase A2 enzymes. Prostaglandins & Other Lipid Mediators, 68-69, 3–58
Xu, J., Weng, Y. I., Simonyi, A., Krugh, B. W., Liao, Z., Weisman, G. A., & Sun, G. Y. (2002). Role of PKC and MAPK in cytosolic PLA2 phosphorylation and arachadonic acid release in primary murine astrocytes. Journal of Neurochemistry, 83, 259–270
Gijon, M. A., Spencer, D. M., Siddiqi, A. R., Bonventre, J. V., & Leslie, C. C. (2000). Cytosolic phospholipase A2 is required for macrophage arachidonic acid release by agonists that Do and Do not mobilize calcium. Novel role of mitogen-activated protein kinase pathways in cytosolic phospholipase A2 regulation. The Journal of Biological Chemistry, 275, 20146–20156
Zhu, X., Sano, H., Kim, K. P., Sano, A., Boetticher, E., Munoz, N. M., Cho, W., & Leff, A. R. (2001). Role of mitogen-activated protein kinase-mediated cytosolic phospholipase A2 activation in arachidonic acid metabolism in human eosinophils. Journal of Immunology, 167, 461–468
Cargnello, M., & Roux, P. P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular Biology Reviews, 75, 50–83
Berenbaum, F., Humbert, L., Bereziat, G., & Thirion, S. (2003). Concomitant recruitment of ERK1/2 and p38 MAPK signalling pathway is required for activation of cytoplasmic phospholipase A2 via ATP in articular chondrocytes. The Journal of Biological Chemistry, 278, 13680–13687
Lin, L. L., Wartmann, M., Lin, A. Y., Knopf, J. L., Seth, A., & Davis, R. J. (1993). cPLA2 is phosphorylated and activated by MAP kinase. Cell, 72, 269–278
Bunt, G., de Wit, J., van den Bosch, H., Verkleij, A. J., & Boonstra, J. (1997). Ultrastructural localization of cPLA2 in unstimulated and EGF/A23187-stimulated fibroblasts. Journal of Cell Science, 110(Pt 19), 2449–2459
Baud, V., & Karin, M. (2001). Signal transduction by tumor necrosis factor and its relatives. Trends in Cell Biology, 11, 372–377
Mayer, R. J., & Marshall, L. A. (1993). New insights on mammalian phospholipase A2(s); comparison of arachidonoyl-selective and -nonselective enzymes. The FASEB Journal, 7, 339–348
Chakraborti, S. (2003). Phospholipase A(2) isoforms: a perspective. Cell Signalling, 15, 637–665
Sun, G. Y., Xu, J., Jensen, M. D., & Simonyi, A. (2004). Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. Journal of Lipid Research, 45, 205–213
Carpena, M., Nunez-Estevez, B., Soria-Lopez, A. & Simal-Gandara, J. (2020). Bee venom: an updating review of its bioactive molecules and its health applications. Nutrients, 12, 1–27
Pucca, M. B., Ahmadi, S., Cerni, F. A., Ledsgaard, L., Sorensen, C. V., McGeoghan, F. T. S., Stewart, T., Schoof, E., Lomonte, B., Auf dem Keller, U., Arantes, E. C., Caliskan, F., & Laustsen, A. H. (2020). Unity makes strength: exploring intraspecies and interspecies toxin synergism between phospholipases A2 and cytotoxins. Frontiers in Pharmacology, 11, 611
Son, D. J., Lee, J. W., Lee, Y. H., Song, H. S., Lee, C. K., & Hong, J. T. (2007). Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacology & Therapeutics, 115, 246–270
Clark, J. D., Schievella, A. R., Nalefski, E. A., & Lin, L. L. (1995). Cytosolic phospholipase A2. Journal of Lipid Mediators and Cell Signalling, 12, 83–117
Shimizu, M., Nakamura, H., Hirabayashi, T., Suganami, A., Tamura, Y., & Murayama, T. (2008). Ser515 phosphorylation-independent regulation of cytosolic phospholipase A2alpha (cPLA2alpha) by calmodulin-dependent protein kinase: possible interaction with catalytic domain A of cPLA2alpha. Cell Signalling, 20, 815–824
Kifor, O., MacLeod, R. J., Diaz, R., Bai, M., Yamaguchi, T., Yao, T., Kifor, I., & Brown, E. M. (2001). Regulation of MAP kinase by calcium-sensing receptor in bovine parathyroid and CaR-transfected HEK293 cells. American Journal of Physiology Renal Physiology, 280, F291–302
Murakami, M., Nakatani, Y., Atsumi, G., Inoue, K., & Kudo, I. (1997). Regulatory functions of phospholipase A2. Critical Reviews in Immunology, 17, 225–283
Saraf, A., Larsson, L., Larsson, B. M., Larsson, K., & Palmberg, L. (1999). House dust induces IL-6 and IL-8 response in A549 epithelial cells. Indoor Air, 9, 219–225
Kramer, R. M., & Sharp, J. D. (1995). Recent insights into the structure, function and biology of cPLA2. Agents and Actions Supplements, 46, 65–76
Tian, W., Wijewickrama, G. T., Kim, J. H., Das, S., Tun, M. P., Gokhale, N., Jung, J. W., Kim, K. P., & Cho, W. (2008). Mechanism of regulation of group IVA phospholipase A2 activity by Ser727 phosphorylation. The Journal of Biological Chemistry, 283, 3960–3971
Allermann, L., & Poulsen, O. M. (2002). Interleukin-8 secretion from monocytic cell lines for evaluation of the inflammatory potential of organic dust. Environmental Research, 88, 188–198
Hansen, L. A., Poulsen, O. M., & Wurtz, H. (1999). Endotoxin potency in the A549 lung epithelial cell bioassay and the limulus amebocyte lysate assay. Journal of Immunological Methods, 226, 49–58
Ezzie, M. E., Piper, M. G., Montague, C., Newland, C. A., Opalek, J. M., Baran, C., Ali, N., Brigstock, D., Lawler, J., & Marsh, C. B. (2011). Thrombospondin-1-deficient mice are not protected from bleomycin-induced pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology, 44, 556–561
Blanco-Vaca, F., Cedo, L., & Julve, J. (2019). Phytosterols in cancer: from molecular mechanisms to preventive and therapeutic potentials. Current Medicinal Chemistry, 26, 6735–6749
Awad, A. B., & Fink, C. S. (2000). Phytosterols as anticancer dietary components: evidence and mechanism of action. The Journal of Nutrition, 130, 2127–2130
Bard, J. M., Paillard, F., & Lecerf, J. M. (2015). Effect of phytosterols/stanols on LDL concentration and other surrogate markers of cardiovascular risk. Diabetes & Metabolism, 41, 69–75
Vezza, T., Canet, F., de Maranon, A. M., Banuls, C., Rocha, M. & Victor, V. M. (2020). Phytosterols: nutritional health players in the management of obesity and its related disorders. Antioxidants, 9, 1–20
Fakih, O., Sanver, D., Kane, D., & Thorne, J. L. (2018). Exploring the biophysical properties of phytosterols in the plasma membrane for novel cancer prevention strategies. Biochimie, 153, 150–161
He, W. S., Zhu, H., & Chen, Z. Y. (2018). Plant sterols: chemical and enzymatic structural modifications and effects on their cholesterol-lowering activity. Journal of Agricultural and Food Chemistry, 66, 3047–3062
Malireddy, S., Lawson, C., Steinhour, E., Hart, J., Kotha, S. R., Patel, R. B., Zhao, L., Wilkins, J. R., Marsh, C. B., Magalang, U. J., Romberger, D., Wewers, M. D., & Parinandi, N. L. (2013). Airborne agricultural particulate matter induces inflammatory cytokine secretion by respiratory epithelial cells: mechanisms of regulation by eicosanoid lipid signal mediators. Indian Journal of Biochemistry & Biophysics, 50, 387–401
Acknowledgements
This work was supported by Department of Defence (DOD) USA grant awarded to ARS and NLP, Departments of Pathology and Internal Medicine and the Division of Pulmonary, Critical Care, and Sleep Medicine of the Ohio State University Wexner Medical Center.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Varikuti, S., Shelton, A.B., Kotha, S.R. et al. Pentalinonsterol, a Phytosterol from Pentalinon andrieuxii, is Immunomodulatory through Phospholipase A2 in Macrophages toward its Antileishmanial Action. Cell Biochem Biophys 80, 45–61 (2022). https://doi.org/10.1007/s12013-021-01030-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12013-021-01030-8