Skip to main content

Hierarchical multi-class SVM with ELM kernel for epileptic EEG signal classification

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In this paper, a novel hierarchical multi-class SVM (H-MSVM) with extreme learning machine (ELM) as kernel is proposed to classify electroencephalogram (EEG) signals for epileptic seizure detection. A clinical EEG benchmark dataset having five classes, obtained from Department of Epileptology, Medical Center, University of Bonn, Germany, is considered in this work for validating the clinical utilities. Wavelet transform-based features such as statistical values, largest Lyapunov exponent, and approximate entropy are extracted and considered as input to the classifier. In general, SVM provides better classification accuracy, but takes more time for classification and also there is scope for a new multi-classification scheme. In order to mitigate the problem of SVM, a novel multi-classification scheme based on hierarchical approach, with ELM kernel, is proposed. Experiments have been conducted using holdout and cross-validation methods on the entire dataset. Metrics namely classification accuracy, sensitivity, specificity, and execution time are computed to analyze the performance of the proposed work. The results show that the proposed H-MSVM with ELM kernel is efficient in terms of better classification accuracy at a lesser execution time when compared to ANN, various multi-class SVMs, and other research works which use the same clinical dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Acharya UR, Molinari F, Sree SV, Chattopadhyay S (2012) Automatic diagnosis of epileptic EEG using entropies. Biomed Signal Process Control 7(4):401–408

    Article  Google Scholar 

  2. Adeli H, Zhou Z, Dadmehr N (2003) Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods 123:69–87

    Article  PubMed  Google Scholar 

  3. Andrzejak RG, Lehnertz K, Rieke C (2001) Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 64(6):061907

    Article  CAS  Google Scholar 

  4. Andrzejak RG, Widman G, Lehnertz K (2001) The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy. Epilepsy Res 44:129–140

    Article  CAS  PubMed  Google Scholar 

  5. Chandaka S, Chatterjee A, Munshi S (2009) Cross-correlation aided support vector machine classifier for classification of EEG signals. Expert Syst Appl 36(2):1329–1336

    Article  Google Scholar 

  6. Diambra L, Figueiredo J, Malta C (1999) Epileptic activity recognition in EEG recording. Phys A Stat Mech Appl 273(3–4):495–505

    Article  Google Scholar 

  7. Erfanian A, Mahmoudi B (2005) Real-time ocular artifact suppression using recurrent neural network for electro-encephalogram based brain–computer interface. Med Biol Eng Comput 43:296–305

    Article  CAS  PubMed  Google Scholar 

  8. Foo SY, Stuart G, Harvey B, Meyer Baese A (2002) Neural network based EEG pattern recognition. Eng Appl Artif Intell 15:253–260

    Article  Google Scholar 

  9. Frenay B Verleysen M (2010) Using SVMs with randomised feature spaces: an extreme learning approach. In: Proceedings of the ESANN, pp 315–320

  10. Gotman J, Flanagah D, Zhan J, Rosenblat B (1997) Automatic seizure detection in the newborn: methods and initial evaluation. Electroencephalogr Clin Neurophysiol 103:356–362

    Article  CAS  PubMed  Google Scholar 

  11. Guler I, Ubeyli (2009) Multiclass support vector machines for EEG-signals classification. IEEE Trans Inf Technol Biomed 11(2):117–126

    Article  Google Scholar 

  12. Guler N, Ubeyli E, Guler I (2005) Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst Appl 29(3):506–514

    Article  Google Scholar 

  13. Guo L, Riveero D, Pazaos A (2010) Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J Neurosci Methods 193:156–163

    Article  PubMed  Google Scholar 

  14. Guo L, Rivero D, Dorado J, Rabunal JR, Pazos A (2010) Automatic epileptic Seizure detection in EEG based on line length feature and artificial neural network. J Neurosci Methods 191:101–109

    Article  PubMed  Google Scholar 

  15. Hasan O (2009) Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl 36:52027–52036

    Google Scholar 

  16. He P, Wilson G, Russel C (2004) Removal of ocular artifacts from electro-encephalogram by adaptive filtering. Med Biol Eng Comput 42(3):407–412

    Article  CAS  PubMed  Google Scholar 

  17. Hsu KC, Yu SN (2010) Detection of seizures in EEG using subband nonlinear parameters and genetic algorithm. Comput Biol Med 40:823–830

    Article  PubMed  Google Scholar 

  18. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501

    Article  Google Scholar 

  19. Hwang H-J, Kim K-H, Jung Y-J, Kim D-W, Lee Y-H, Im, C-H (2011) An EEG-based real-time cortical functional connectivity imaging system. Med Biol Eng Comput 49(9):985–995

  20. Iscan Z, Dokur Z, Demiralap T (2011) Classification of electroencephalogram signals with combined time and frequency features. Expert Syst Appl 38:10499–10505

    Article  Google Scholar 

  21. Jahankhani P, Kodogiannis V, Revett K (2006) EEG signal classification using wavelet feature extraction and neural networks. In: IEEE John Vincent Atanasoff 2006 international symposium on modern computing, pp 52–57

  22. Jennifer C, John GG, Phil HJ, Griffiths Clive J, Drinnan Michael J (2006) Comparison of manual sleep staging with automated neural network-based analysis in clinical practice. Med Biol Eng Comput 44(1/2):105–110

    Google Scholar 

  23. Kalayci T, Ozdamar O (1995) Wavelet preprocessing for automated neural network detection of EEG spikes. IEEE Eng Med Biol Mag 14(2):160–166

    Article  Google Scholar 

  24. Kannathal N, Choo ML, Acharya UR, Sadasivan PK (2005) Entropies for detection of epilepsy in EEG. Comput Methods Programs Biomed 80:187–194

    Article  CAS  PubMed  Google Scholar 

  25. Kannathal N, Choo M, Acharya U, Sadasivan P (2005) Entropies for detection of epilepsy in EEG. Comput Methods Programs Biomed 80(3):187–194

    Article  CAS  PubMed  Google Scholar 

  26. Khan YU, Gotman J (2003) Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin Neurophysiol 114:898–908

    Article  CAS  PubMed  Google Scholar 

  27. Kiymik MK, Akin M, Subasi A (2004) Automatic recognition of alertness level by using wavelet transform and artificial neural network. J Neurosci Methods 139:231–240

    Article  PubMed  Google Scholar 

  28. Kiymik MK, Subasi A, Ozcalik HR (2004) Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizure. J Med Syst 28(6):511–522

    Article  PubMed  Google Scholar 

  29. Liang SF, Wang HC, Chang WL (2010) Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection. In: EURASIP journal on advances in signal processing, p 853434

  30. Liu A, Hahn JS, Heldt GP, Coen RW (1992) Detection of neonatal seizures through computerized EEG analysis. Electroencephalogr Clin Neurophysiol 82:30–37

    Article  CAS  PubMed  Google Scholar 

  31. McSharry PE, He T, Smith LA, Tarassenko L (2002) Linear and non-linear methods for automatic seizure detection in scalp electro-encephalogram recordings. Med Biol Eng Comput 40:447–461

    Article  CAS  PubMed  Google Scholar 

  32. Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A (2010) OP-ELM: optimally pruned extreme learning machine. IEEE Trans Neural Netw 21(1):158–162

    Article  PubMed  Google Scholar 

  33. Mohseni H, Maghsoudi A, Kadbi M, Hashemi J, Ashourvan A (2006) Automatic detection of epileptic seizure using time–frequency distributions. In: IET 3rd international conference on advances in medical, signal and information processing, vol 14

  34. Nicolaou N, Georgiou J (2012) Detection of epileptic electroencephalogram based on permutation entropy and support vector machine. Expert Syst Appl 39:202–209

    Article  Google Scholar 

  35. Nigam V, Graupe D (2004) A neural-network-based detection of epilepsy. Neurol Res 26(1):55–60

    Article  PubMed  Google Scholar 

  36. Ocak H (2009) Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl 36(2):2027–2036

    Article  Google Scholar 

  37. Peltoranta M, Pfurtscheller G (1994) Neural network based classification of non-averaged event-related EEG responses. Med Biol Eng Comput 32:189–196

    Article  CAS  PubMed  Google Scholar 

  38. Petrosian A, Prokhorov D, Homan R, Dashei R, Wunsch D (2000) Recurrent neural network based prediction of epileptic seizures in intra and extracranial EEG. Neurocomputing 30:201–218

    Article  Google Scholar 

  39. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 88:2297–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Radhakrishnan N, Gangadhar B (1998) Estimating regularity in epileptic seizure time-series data: a complexity-measure approach. IEEE Eng Med Biol 17(3):89–94

    Article  CAS  Google Scholar 

  41. Schaltenbrand N, Lengelle R, Toussaint M (1996) Sleep stage scoring using the neural network model: comparison between visual and automatic analysis in normal subjects and patients. Sleep 19(1):26–35

    CAS  PubMed  Google Scholar 

  42. Srinivasan V, Eswaran C, Sriraam N (2005) Artificial neural network based epileptic detection using time-domain and frequency-domain features. J Med Syst 29(6):647–660

    Article  CAS  PubMed  Google Scholar 

  43. Subasi A (2005) Epileptic seizure detection using dynamic wavelet network. Expert Syst Appl 29(2):343–355

    Article  Google Scholar 

  44. Subasi A (2006) Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Expert Syst Appl 31:320–328

    Article  Google Scholar 

  45. Subasi A (2007) Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Comput Biol Med 37(2):227–244

    Article  PubMed  Google Scholar 

  46. Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32(4):1084–1093

    Article  Google Scholar 

  47. Subasi A, Gursoy MI (2010) EEG signal classification using PCA, ICA, LDA and support vector machine. Expert Syst Appl 37:8659–8666

    Article  Google Scholar 

  48. Tzallas A, Tsipouras M, Fotiadis D (2007) Automatic seizure detection based on time–frequency analysis and artificial neural networks. Comput Intell Neurosci 13, Article ID 80510

  49. Ubeyli E (2006) Analysis of EEG signals using Lyapunov exponents. Neural Netw World 16(3):257–273

    Google Scholar 

  50. Ubeyli E (2006) Fuzzy similarity index employing Lyapunov exponents for discrimination of EEG signals. Neural Netw World 16(5):421–431

    Google Scholar 

  51. Ubeyli ED (2010) Least square support vector machine employing model-based methods coefficients for analysis of EEG signals. Expert Syst Appl 37:233–239

    Article  Google Scholar 

  52. Varun J, Ram Bilas P, Antony V (2014) Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed Signal Process Control 9:1–5

    Article  Google Scholar 

  53. Williams CKI (1998) Computation with infinite neural networks. Neural Comput 10:1203–1216

    Article  Google Scholar 

  54. Zarjam P, Mesbah M, Boashash B (2003) Detection of newborns EEG seizure using optimal features based on discrete wavelet transform. Proc IEEE Int Conf Acoust Speech Signal Process 2:265–268

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Andrzejak et al. [3], for the EEG dataset available: (http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html) and Neurology Department of Sri Ramakrishna Hospital, Coimbatore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Muthanantha Murugavel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugavel, A.S.M., Ramakrishnan, S. Hierarchical multi-class SVM with ELM kernel for epileptic EEG signal classification. Med Biol Eng Comput 54, 149–161 (2016). https://doi.org/10.1007/s11517-015-1351-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1351-2

Keywords