Skip to main content
Log in

Patchy deletion of Bmpr1a potentiates proximal pulmonary artery remodeling in mice exposed to chronic hypoxia

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Reduced vascular expression of bone morphogenetic protein type IA receptor (Bmpr1a) has been found in patients with pulmonary arterial hypertension. Our previous studies in mice with patchy deletion of Bmpr1a in vascular smooth muscle cells and cardiac myocytes showed decreased distal vascular remodeling despite a similar severity of hypoxic pulmonary hypertension (HPH). We speculate increased stiffness from ectopic deposition of collagen in proximal pulmonary arteries might account for HPH. Pulsatile pressure-flow relationships were measured in isolated, ventilated, perfused lungs of SM22α;TRE-Cre;R26R;Bmpr1a flox/flox (KO) mice and wild-type littermates, following 21 days (hypoxia) and 0 days (control) of chronic hypoxia. Pulmonary vascular impedance, which yields insight into proximal and distal arterial remodeling, was calculated. Reduced Bmpr1a expression had no effect on input impedance Z 0 (P = 0.52) or characteristic impedance Z C (P = 0.18) under control conditions; it also had no effect on the decrease in Z 0 via acute rho kinase inhibition. However, following chronic hypoxia, reduced Bmpr1a expression increased Z C (P < 0.001) without affecting Z 0 (P = 0.72). These results demonstrate that Bmpr1a deficiency does not significantly alter the hemodynamic function of the distal vasculature or its response to chronic hypoxia but larger, more proximal arteries are affected. In particular, reduced Bmpr1a expression likely decreased dilatation and increased stiffening in response to hypoxia, probably by collagen accumulation. Increased PA stiffness can have a significant impact on right ventricular function. This study illustrates for the first time how proximal pulmonary artery changes in the absence of distal pulmonary artery changes contribute to pulmonary arterial hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson C, Stewart S, Upton PD, Machado R, Thomson JR, Trembath RC, Morrell NW (2002) Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 105(14): 1672–1678

    Article  Google Scholar 

  • Bellusci S, Henderson R, Winnier G, Oikawa T, Hogan BL (1996) Evidence from normal expression and targeted misexpression that bone morphogenetic protein (Bmp-4) plays a role in mouse embryonic lung morphogenesis. Development 122(6): 1693–1702

    Google Scholar 

  • Benumof J (1985) One-lung ventilation and hypoxic pulmonary vasoconstriction: implications for anesthetic management. Anesth Analg 64(8): 821–833

    Article  Google Scholar 

  • Cardoso WV (2001) Molecular regulation of lung development. Annu Rev Physiol 63: 471–494. doi:10.1146/annurev.physiol.63.1.47163/1/471[pii]

    Article  MathSciNet  Google Scholar 

  • Du L, Sullivan CC, Chu D, Cho AJ, Kido M, Wolf PL, Yuan JX, Deutsch R, Jamieson SW, Thistlethwaite PA (2003) Signaling molecules in nonfamilial pulmonary hypertension. N Engl J Med 348(6): 500–509. doi:348/6/500[pii]10.1056/NEJMoa021650

    Article  Google Scholar 

  • El-Bizri N, Wang L, Merklinger S, Guignabert C, Desai T, Urashima T, Sheikh A, Knutsen R, Mecham R, Mishina Y, Rabinovitch M (2008) Smooth muscle protein 22alpha-mediated patchy deletion of Bmpr1a impairs cardiac contractility but protects against pulmonary vascular remodeling. Circ Res 102(3): 380–388. doi:CIRCRESAHA.107.161059[pii]10.1161/CIRCRESAHA.107.161059

    Article  Google Scholar 

  • Gan CT, Lankhaar JW, Westerhof N, Marcus JT, Becker A, Twisk JW, Boonstra A, Postmus PE, Vonk-Noordegraaf A (2007) Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest 132(6): 1906–1912

    Article  Google Scholar 

  • Gilboa L, Nohe A, Geissendorfer T, Sebald W, Henis YI, Knaus P (2000) Bone morphogenetic protein receptor complexes on the surface of live cells: a new oligomerization mode for serine/threonine kinase receptors. Mol Biol Cell 11(3): 1023–1035

    Google Scholar 

  • Hyvelin JM, Howell K, Nichol A, Costello CM, Preston RJ, McLoughlin P (2005) Inhibition of Rho-kinase attenuates hypoxia-induced angiogenesis in the pulmonary circulation. Circ Res 97(2): 185–191

    Article  Google Scholar 

  • Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recognit Lett 31: 651–666

    Article  Google Scholar 

  • Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3): 264–323

    Article  Google Scholar 

  • King JA, Marker PC, Seung KJ, Kingsley DM (1994) BMP5 and the molecular, skeletal, and soft-tissue alterations in short ear mice. Dev Biol 166(1): 112–122. doi:S0012-1606(84)71300-5[pii]10.1006/dbio.1994.1300

    Article  Google Scholar 

  • Li F, Xia W, Yuan S, Sun R (2009) Acute inhibition of Rho-kinase attenuates pulmonary hypertension in patients with congenital heart disease. Pediatr Cardiol 30(3): 363–366

    Article  Google Scholar 

  • Mahapatra S, Nishimura R, Sorajja P, Cha S, McGoon M (2006) Relationship of pulmonary arterial capacitance and mortality in idiopathic pulmonary arterial hypertension. J Am Coll Cardiol 47(4): 799–803

    Article  Google Scholar 

  • Mathers J, Benumof J, Wahrenbrock E (1977) General anesthetics and regional hypoxic pulmonary vasoconstriction. Anesthesiology 46(2): 111–114

    Article  Google Scholar 

  • McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J (2009) ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 53(17): 1573–1619. doi:S0735-1097(09)00142-9[pii]10.1016/j.jacc.2009.01.004

    Article  Google Scholar 

  • Milnor WR (1989) Hemodynamics, 2nd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Milnor WR, Conti CR, Lewis KB, O’Rourke MF (1969) Pulmonary arterial pulse wave velocity and impedance in man. Circ Res 25(6): 637–649

    Article  Google Scholar 

  • Nagaoka T, Fagan KA, Gebb SA, Morris KG, Suzuki T, Shimokawa H, McMurtry IF, Oka M (2005) Inhaled Rho kinase inhibitors are potent and selective vasodilators in rat pulmonary hypertension. Am J Respir Crit care Med 171(5): 494–499

    Article  Google Scholar 

  • Nagaoka T, Morio Y, Casanova N, Bauer N, Gebb S, McMurtry I, Oka M (2004) Rho/Rho kinase signaling mediates increased basal pulmonary vascular tone in chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 287(4): L665–672

    Article  Google Scholar 

  • Newman JH, Phillips JA 3rd, Loyd JE (2008) Narrative review: the enigma of pulmonary arterial hypertension: new insights from genetic studies. Ann Intern Med 148(4): 278–283. doi:148/4/278[pii]

    Google Scholar 

  • Nichols WW, O’Rourke MF, Hartley C, McDonald DA (2005) McDonald’s blood flow in arteries : theoretical, experimental, and clinical principles, 5th edn. Arnold, London

    Google Scholar 

  • Ooi CY, Wang Z, Tabima DM, Eickhoff JC, Chesler NC (2010) The role of collagen in extralobar pulmonary artery stiffening in response to hypoxia-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 299(6): H1823–1831. doi:ajpheart.00493.2009[pii]10.1152/ajpheart.00493.2009

    Article  Google Scholar 

  • Schwenke DO, Pearson JT, Mori H, Shirai M (2006) Long-term monitoring of pulmonary arterial pressure in conscious, unrestrained mice. J Pharmacol Toxicol Methods 53(3): 277–283. doi:S1056-8719(05)00142-5[pii]10.1016/j.vascn.2005.11.003

    Article  Google Scholar 

  • Sheedy W, Thompson JS, Morice AH (1996) A comparison of pathophysiological changes during hypobaric and normobaric hypoxia in rats. Respiration 63(4): 217–222

    Article  Google Scholar 

  • Stenmark KR, Fagan KA, Frid MG (2006) Hypoxia-induced pulmonary vascular remodeling - cellular and molecular mechanisms. Circ Res 99(7): 675–691. doi:10.1161/01.RES.0000243584.45145.3f

    Article  Google Scholar 

  • Tabima D, Chesler N (2010) The effects of vasoactivity and hypoxic pulmonary hypertension on extralobar pulmonary artery biomechanics. J Biomech 43(10): 1864–1869. doi:S0021-9290(10)00178-8[pii]10.1016/j.jbiomech.2010.03.033

    Article  Google Scholar 

  • Tabima DM, Chesler NC (2010) The effects of vasoactivity and hypoxic pulmonary hypertension on extralobar pulmonary artery biomechanics. J Biomech 43(10): 1864–1869. doi:S0021-9290(10)00178-8[pii]10.1016/j.jbiomech.2010.03.033

    Article  Google Scholar 

  • Tabima DM, Hacker TA, Chesler NC (2010) Measuring right ventricular function in the normal and hypertensive mouse hearts using admittance-derived pressure-volume loops. Am J Physiol Heart Circ Physiol. doi:ajpheart.00805.2010[pii]10.1152/ajpheart.00805.2010

  • Takahashi H, Goto N, Kojima Y, Tsuda Y, Morio Y, Muramatsu M, Fukuchi Y (2006) Downregulation of type II bone morphogenetic protein receptor in hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 290(3): L450–458. doi:00206.2005[pii]10.1152/ajplung.00206.2005

    Article  Google Scholar 

  • Thomson J, Machado R, Pauciulo M, Morgan N, Yacoub M, Corris P, McNeil K, Loyd J, Nichols W, Trembath R (2001) Familial and sporadic primary pulmonary hypertension is caused by BMPR2 gene mutations resulting in haploinsufficiency of the bone morphogenetic protein tùype II receptor. J Heart Lung Transplant 20(2): 149. doi:S1053-2498(01)00259-5[pii]

    Article  Google Scholar 

  • Tuchscherer HA, Vanderpool RR, Chesler NC (2007) Pulmonary vascular remodeling in isolated mouse lungs: effects on pulsatile pressure-flow relationships. J Biomech 40(5): 993–1001

    Article  Google Scholar 

  • Tuchscherer HA, Webster EB, Chesler NC (2006) Pulmonary vascular resistance and impedance in isolated mouse lungs: effects of pulmonary emboli. Ann Biomed Eng 34(4): 660–668

    Article  Google Scholar 

  • Urist MR (1965) Bone: formation by autoinduction. Science 150(698): 893–899

    Article  Google Scholar 

  • Vanderpool RR, Kim AR, Molthen R, Chesler NC (2011) Effects of acute Rho kinase inhibition on chronic hypoxia-induced changes in proximal and distal pulmonary arterial structure and function. J Appl Physiol 110(1): 188–198. doi:japplphysiol.00533.2010[pii]10.1152/japplphysiol.00533.2010

    Article  Google Scholar 

  • Vanderpool RR, Naeije R, Chesler NC (2010) Impedance in isolated mouse lungs for the determination of site of action of vasoactive agents and disease. Ann Biomed Eng 38(5): 1854–1861. doi:10.1007/s10439-010-9960-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi C. Chesler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanderpool, R.R., El-Bizri, N., Rabinovitch, M. et al. Patchy deletion of Bmpr1a potentiates proximal pulmonary artery remodeling in mice exposed to chronic hypoxia. Biomech Model Mechanobiol 12, 33–42 (2013). https://doi.org/10.1007/s10237-012-0379-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0379-6

Keywords

Navigation