Abstract
Kynurenine is a small molecule derived from tryptophan when this amino acid is metabolised via the kynurenine pathway. The biological activity of kynurenine and its metabolites (kynurenines) is well recognised. Therefore, understanding the regulation of the subsequent biochemical reactions is essential for the design of therapeutic strategies which aim to interfere with the kynurenine pathway. However, kynurenine concentration in the body may not only be determined by the efficiency of kynurenine synthesis but also by the rate of kynurenine clearance. In this review, current knowledge about the mechanisms of kynurenine production and routes of its clearance is presented. In addition, the involvement of kynurenine and its metabolites in the biology of different T cell subsets (including Th17 cells and regulatory T cells) and neuronal cells is discussed.
Similar content being viewed by others
References
Allegri G, Costa CV, Bertazzo A, Biasiolo M, Ragazzi E (2003) Enzyme activities of tryptophan metabolism along the kynurenine pathway in various species of animals. Farmaco 58:829–836
Amori L, Guidetti P, Pellicciari R, Kajii Y, Schwarcz R (2009) On the relationship between the two branches of the kynurenine pathway in the rat brain in vivo. J Neurochem 109:316–325
Baban B, Chandler P, McCool D, Marshall B, Munn DH, Mellor AL (2004) Indoleamine 2,3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J Reprod Immunol 61:67–77
Barth MC, Ahluwalia N, Anderson TJ, Hardy GJ, Sinha S, Alvarez-Cardona JA, Pruitt IE, Rhee EP, Colvin RA, Gerszten RE (2009) Kynurenic acid triggers firm arrest of leukocytes to vascular endothelium under flow conditions. J Biol Chem 284:19189–19195
Bauer TM, Jiga LP, Chuang JJ, Randazzo M, Opelz G, Terness P (2005) Studying the immunosuppressive role of indoleamine 2,3-dioxygenase: tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo. Transplant Int 18:95–100
Beadle GW, Mitchell HK, Nyc JF (1947) Kynurenine as an intermediate in the formation of nicotinic acid from tryptophane by Neurospora. Proc Natl Acad Sci USA 33:155–158
Belladonna ML, Grohmann U, Guidetti P, Volpi C, Bianchi R, Fioretti MC, Schwarcz R, Fallarino F, Puccetti P (2006) Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J Immunol 177:130–137
Bertazzo A, Ragazzi E, Biasiolo M, Costa CV, Allegri G (2001) Enzyme activities involved in tryptophan metabolism along the kynurenine pathway in rabbits. Biochim Biophys Acta 1527:167–175
Black AR, Black JD, Azizkhan-Clifford J (2001) Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 188:143–160
Breton J, Avanzi N, Magagnin S, Covini N, Magistrelli G, Cozzi L, Isacchi A (2000) Functional characterization and mechanism of action of recombinant human kynurenine 3-hydroxylase. Eur J Biochem 267:1092–1099
Carpenedo R, Chiarugi A, Russi P, Lombardi G, Carla V, Pellicciari R, Mattoli L, Moroni F (1994) Inhibitors of kynurenine hydroxylase and kynureninase increase cerebral formation of kynurenate and have sedative and anticonvulsant activities. Neuroscience 61:237–243
Chiarugi A, Moroni F (1999) Quinolinic acid formation in immune-activated mice: studies with (m-nitrobenzoyl)-alanine (mNBA) and 3,4-dimethoxy-[-N-4-(-3-nitrophenyl)thiazol-2yl]-benzenesulfonamide (Ro 61–8048), two potent and selective inhibitors of kynurenine hydroxylase. Neuropharmacology 38:1225–1233
Comai S, Costa CV, Ragazzi E, Bertazzo A, Allegri G (2005) The effect of age on the enzyme activities of tryptophan metabolism along the kynurenine pathway in rats. Clin Chim Acta 360:67–80
Connor TJ, Starr N, O’Sullivan JB, Harkin A (2008) Induction of indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-gamma? Neurosci Lett 441:29–34
Cozzi A, Carpenedo R, Moroni F (1999) Kynurenine hydroxylase inhibitors reduce ischemic brain damage: studies with (m-nitrobenzoyl)-alanine (mNBA) and 3,4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzenesulfonamide (Ro 61–8048) in models of focal or global brain ischemia. J Cereb Blood Flow Metab 19:771–777
Criado G, Simelyte E, Inglis JJ, Essex D, Williams RO (2009) Indoleamine 2,3 dioxygenase-mediated tryptophan catabolism regulates accumulation of Th1/Th17 cells in the joint in collagen-induced arthritis. Arthritis Rheum 60:1342–1351
del Amo EM, Urtti A, Yliperttula M (2008) Pharmacokinetic role of l-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci 35:161–174
Desvignes L, Ernst JD (2009) Interferon-gamma-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis. Immunity 31:974–985
Dobrovolsky VN, Bucci T, Heflich RH, Desjardins J, Richardson FC (2003) Mice deficient for cytosolic thymidine kinase gene develop fatal kidney disease. Mol Genet Metab 78:1–10
Dobrovolsky VN, Bowyer JF, Pabarcus MK, Heflich RH, Williams LD, Doerge DR, Arvidsson B, Bergquist J, Casida JE (2005) Effect of arylformamidase (kynurenine formamidase) gene inactivation in mice on enzymatic activity, kynurenine pathway metabolites and phenotype. Biochim Biophys Acta 1724:163–172
Espey MG, Moffett JR, Namboodiri MA (1995) Temporal and spatial changes of quinolinic acid immunoreactivity in the immune system of lipopolysaccharide-stimulated mice. J Leukoc Biol 57:199–206
Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC, Puccetti P (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9:1069–1077
Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C et al (2006) The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 176:6752–6761
Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB (2002) Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 196:459–468
Fujigaki S, Saito K, Takemura M, Fujii H, Wada H, Noma A, Seishima M (1998) Species differences in l-tryptophan-kynurenine pathway metabolism: quantification of anthranilic acid and its related enzymes. Arch Biochem Biophys 358:329–335
Gal EM, Sherman AD (1978) Synthesis and metabolism of l-kynurenine in rat brain. J Neurochem 30:607–613
Giorgini F, Guidetti P, Nguyen Q, Bennett SC, Muchowski PJ (2005) A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet 37:526–531
Guidetti P, Eastman CL, Schwarcz R (1995) Metabolism of [5–3H]kynurenine in the rat brain in vivo: evidence for the existence of a functional kynurenine pathway. J Neurochem 65:2621–2632
Hankes LV, Henderson LM (1957) The metabolism of carboxyl-labeled 3-hydroxyanthranilic acid in the rat. J Biol Chem 225:349–354
Harrington L, Srikanth CV, Antony R, Rhee SJ, Mellor AL, Shi HN, Cherayil BJ (2008) Deficiency of indoleamine 2,3-dioxygenase enhances commensal-induced antibody responses and protects against Citrobacter rodentium-induced colitis. Infect Immun 76:3045–3053
Hayashi T, Mo JH, Gong X, Rossetto C, Jang A, Beck L, Elliott GI, Kufareva I, Abagyan R, Broide DH et al (2007) 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc Natl Acad Sci USA 104:18619–18624
Heyes MP, Chen CY, Major EO, Saito K (1997) Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Biochem J 326(Pt 2):351–356
Huang YW, Jansen RA, Fabbri E, Potter D, Liyanarachchi S, Chan MW, Liu JC, Crijns AP, Brown R, Nephew KP et al (2009) Identification of candidate epigenetic biomarkers for ovarian cancer detection. Oncol Rep 22:853–861
Huang YW, Luo J, Weng YI, Mutch DG, Goodfellow PJ, Miller DS, Huang TH (2010) Promoter hypermethylation of CIDEA, HAAO and RXFP3 associated with microsatellite instability in endometrial carcinomas. Gynecol Oncol 117:239–247
Inglis JJ, Criado G, Andrews M, Feldmann M, Williams RO, Selley ML (2007) The anti-allergic drug, N-(3′,4′-dimethoxycinnamonyl) anthranilic acid, exhibits potent anti-inflammatory and analgesic properties in arthritis. Rheumatology (Oxford) 46:1428–1432
Iwagaki H, Hizuta A, Tanaka N, Orita K (1995) Decreased serum tryptophan in patients with cancer cachexia correlates with increased serum neopterin. Immunol Invest 24:467–478
Jakoby WB (1954) Kynurenine formamidase from Neurospora. J Biol Chem 207:657–663
Kanai M, Funakoshi H, Takahashi H, Hayakawa T, Mizuno S, Matsumoto K, Nakamura T (2009) Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice. Mol Brain 2:8
Kaper T, Looger LL, Takanaga H, Platten M, Steinman L, Frommer WB (2007) Nanosensor detection of an immunoregulatory tryptophan influx/kynurenine efflux cycle. PLoS Biol 5:e257
Kincses ZT, Toldi J, Vecsei L (2010) Kynurenines, neurodegeneration and Alzheimer’s disease. J Cell Mol Med 14(8):2045–2054
Leblhuber F, Walli J, Jellinger K, Tilz GP, Widner B, Laccone F, Fuchs D (1998) Activated immune system in patients with Huntington’s disease. Clin Chem Lab Med 36:747–750
Lee SM, Lee YS, Choi JH, Park SG, Choi IW, Joo YD, Lee WS, Lee JN, Choi I, Seo SK (2010) Tryptophan metabolite 3-hydroxyanthranilic acid selectively induces activated T cell death via intracellular GSH depletion. Immunol Lett 132:53–60
Luthman J (2000) Anticonvulsant effects of the 3-hydroxyanthranilic acid dioxygenase inhibitor NCR-631. Amino Acids 19:325–334
Luthman J, Radesater AC, Oberg C (1998) Effects of the 3-hydroxyanthranilic acid analogue NCR-631 on anoxia-, IL-1 beta- and LPS-induced hippocampal pyramidal cell loss in vitro. Amino Acids 14:263–269
McIlroy D, Tanguy-Royer S, Le Meur N, Guisle I, Royer PJ, Leger J, Meflah K, Gregoire M (2005) Profiling dendritic cell maturation with dedicated microarrays. J Leukoc Biol 78:794–803
Mehler AH, Knox WE (1950) The conversion of tryptophan to kynurenine in liver II. The enzymatic hydrolysis of formylkynurenine. J Biol Chem 187:431–438
Moffett JR, Namboodiri MA (2003) Tryptophan and the immune response. Immunol Cell Biol 81:247–265
Moffett JR, Blinder KL, Venkateshan CN, Namboodiri MA (1998) Differential effects of kynurenine and tryptophan treatment on quinolinate immunoreactivity in rat lymphoid and non-lymphoid organs. Cell Tissue Res 293:525–534
Morita T, Saito K, Takemura M, Maekawa N, Fujigaki S, Fujii H, Wada H, Takeuchi S, Noma A, Seishima M (2001) 3-Hydroxyanthranilic acid, an l-tryptophan metabolite, induces apoptosis in monocyte-derived cells stimulated by interferon-gamma. Ann Clin Biochem 38:242–251
Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, Mellor AL (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–642
Nemeth H, Toldi J, Vecsei L (2005) Role of kynurenines in the central and peripheral nervous systems. Curr Neurovasc Res 2:249–260
Nishimoto Y, Takeuchi F, Shibata Y (1979) Purification of l-kynurenine 3-hydroxylase by affinity chromatography. J Chromatogr 169:357–364
O’Connor JC, Lawson MA, Andre C, Briley EM, Szegedi SS, Lestage J, Castanon N, Herkenham M, Dantzer R, Kelley KW (2009) Induction of IDO by bacille Calmette-Guerin is responsible for development of murine depressive-like behavior. J Immunol 182:3202–3212
Okuda S, Nishiyama N, Saito H, Katsuki H (1996) Hydrogen peroxide-mediated neuronal cell death induced by an endogenous neurotoxin, 3-hydroxykynurenine. Proc Natl Acad Sci USA 93:12553–12558
Okuda S, Nishiyama N, Saito H, Katsuki H (1998) 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J Neurochem 70:299–307
Oxenkrug GF (2007) Genetic and hormonal regulation of tryptophan kynurenine metabolism: implications for vascular cognitive impairment, major depressive disorder, and aging. Ann NY Acad Sci 1122:35–49
Pellegrin K, Neurauter G, Wirleitner B, Fleming AW, Peterson VM, Fuchs D (2005) Enhanced enzymatic degradation of tryptophan by indoleamine 2,3-dioxygenase contributes to the tryptophan-deficient state seen after major trauma. Shock 23:209–215
Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM, Gupta R, Lee LY, Kidd BA, Robinson WH et al (2005) Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 310:850–855
Ploder M, Spittler A, Schroecksnadel K, Neurauter G, Pelinka LE, Roth E, Fuchs D (2009) Tryptophan degradation in multiple trauma patients: survivors compared with non-survivors. Clin Sci (Lond) 116:593–598
Prendergast GC (2008) Immune escape as a fundamental trait of cancer: focus on IDO. Oncogene 27:3889–3900
Qiu H, Garcia-Barrio MT, Hinnebusch AG (1998) Dimerization by translation initiation factor 2 kinase GCN2 is mediated by interactions in the C-terminal ribosome-binding region and the protein kinase domain. Mol Cell Biol 18:2697–2711
Robinson CM, Hale PT, Carlin JM (2005) The role of IFN-gamma and TNF-alpha-responsive regulatory elements in the synergistic induction of indoleamine dioxygenase. J Interferon Cytokine Res 25:20–30
Russo S, Kema IP, Fokkema MR, Boon JC, Willemse PH, de Vries EG, den Boer JA, Korf J (2003) Tryptophan as a link between psychopathology and somatic states. Psychosom Med 65:665–671
Saito K, Crowley JS, Markey SP, Heyes MP (1993) A mechanism for increased quinolinic acid formation following acute systemic immune stimulation. J Biol Chem 268:15496–15503
Salter M, Knowles RG, Pogson CI (1986) Quantification of the importance of individual steps in the control of aromatic amino acid metabolism. Biochem J 234:635–647
Sapko MT, Guidetti P, Yu P, Tagle DA, Pellicciari R, Schwarcz R (2006) Endogenous kynurenate controls the vulnerability of striatal neurons to quinolinate: implications for Huntington’s disease. Exp Neurol 197:31–40
Schroecksnadel K, Kaser S, Ledochowski M, Neurauter G, Mur E, Herold M, Fuchs D (2003) Increased degradation of tryptophan in blood of patients with rheumatoid arthritis. J Rheumatol 30:1935–1939
Schuettengruber B, Doetzlhofer A, Kroboth K, Wintersberger E, Seiser C (2003) Alternate activation of two divergently transcribed mouse genes from a bidirectional promoter is linked to changes in histone modification. J Biol Chem 278:1784–1793
Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10
Speciale C, Hares K, Schwarcz R, Brookes N (1989) High-affinity uptake of l-kynurenine by a Na+-independent transporter of neutral amino acids in astrocytes. J Neurosci 9:2066–2072
Stone TW, Darlington LG (2002) Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 1:609–620
Stone TW, Behan WM, Jones PA, Darlington LG, Smith RA (2001) The role of kynurenines in the production of neuronal death, and the neuroprotective effect of purines. J Alzheimers Dis 3:355–366
Taher YA, Piavaux BJ, Gras R, van Esch BC, Hofman GA, Bloksma N, Henricks PA, van Oosterhout AJ (2008) Indoleamine 2,3-dioxygenase-dependent tryptophan metabolites contribute to tolerance induction during allergen immunotherapy in a mouse model. J Allergy Clin Immunol 121:983–991 e982
Takeuchi F, Shibata Y (1984) Kynurenine metabolism in vitamin-B-6-deficient rat liver after tryptophan injection. Biochem J 220:693–699
Takikawa O, Yoshida R, Kido R, Hayaishi O (1986) Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase. J Biol Chem 261:3648–3653
Tanizawa K, Soda K (1979a) Inducible and constitutive kynureninases. Control of the inducible enzyme activity by transamination and inhibition of the constitutive enzyme by 3-hydroxyanthranilate. J Biochem 86:499–508
Tanizawa K, Soda K (1979b) The mechanism of kynurenine hydrolysis catalyzed by kynureninase. J Biochem 86:1199–1209
Terness P, Bauer TM, Rose L, Dufter C, Watzlik A, Simon H, Opelz G (2002) Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196:447–457
Ueda T, Otsuka H, Goda K, Ishiguro I, Naito J, Kotake Y (1978) The metabolism of [carboxyl-14C]anthranilic acid. I. The incorporation of radioactivity into NAD+ and NADP+. J Biochem 84:687–696
von Bubnoff D, Matz H, Frahnert C, Rao ML, Hanau D, de la Salle H, Bieber T (2002) Fcepsilon RI induces the tryptophan degradation pathway involved in regulating T cell responses. J Immunol 169:1810–1816
Wagner CA, Lang F, Broer S (2001) Function and structure of heterodimeric amino acid transporters. Am J Physiol Cell Physiol 281:C1077–C1093
Walsh JL, Todd WP, Carpenter BK, Schwarcz R (1991) 4-Halo-3-Hydroxyanthranilic acids: potent competitive inhibitors of 3-hydroxy-anthranilic acid oxygenase in vitro. Biochem Pharmacol 42:985–990
Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281:22021–22028
Wang Y, Liu H, McKenzie G, Witting PK, Stasch JP, Hahn M, Changsirivathanathamrong D, Wu BJ, Ball HJ, Thomas SR et al (2010) Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nat Med 16:279–285
Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34:7–11
Widner B, Sepp N, Kowald E, Ortner U, Wirleitner B, Fritsch P, Baier-Bitterlich G, Fuchs D (2000) Enhanced tryptophan degradation in systemic lupus erythematosus. Immunobiology 201:621–630
Widner B, Laich A, Sperner-Unterweger B, Ledochowski M, Fuchs D (2002) Neopterin production, tryptophan degradation, and mental depression—what is the link? Brain Behav Immun 16:590–595
Yeh JK, Brown RR (1977) Effects of vitamin B-6 deficiency and tryptophan loading on urinary excretion of tryptophan metabolites in mammals. J Nutr 107:261–271
Zaborske JM, Narasimhan J, Jiang L, Wek SA, Dittmar KA, Freimoser F, Pan T, Wek RC (2009) Genome-wide analysis of tRNA charging and activation of the eIF2 kinase Gcn2p. J Biol Chem 284:25254–25267
Conflict of interest
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kolodziej, L.R., Paleolog, E.M. & Williams, R.O. Kynurenine metabolism in health and disease. Amino Acids 41, 1173–1183 (2011). https://doi.org/10.1007/s00726-010-0787-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00726-010-0787-9