Total Phenolic Contents and Antioxidant Capacities of Selected Chinese Medicinal Plants
Abstract
:1. Introduction
2. Results and Discussion
2.1. ABTS•+ Radical Scavenging Activity
2.2. Ferric Reducing Antioxidant Power
2.3. Total Phenolic Content
2.4. Correlation between Antioxidant Capacity and Total Phenolic Content
3. Experimental Section
3.1. Chemicals and Plant Materials
3.2. Sample Preparation
3.3. Trolox Equivalent Antioxidant Capacity Assay
3.4. Ferric Reducing Antioxidant Power Assay
3.5. Determination of Total Phenolic Content
3.6. Statistical Analysis
4. Conclusions
Acknowledgments
References and Notes
- Martínez-Cayuela, M. Oxygen free radicals and human disease. Biochimie 1995, 77, 147–161. [Google Scholar]
- Sies, H. Oxidative stress: oxidants and antioxidants. Exp. Physiol 1997, 82, 291–295. [Google Scholar]
- Finkel, T; Holbrook, NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar]
- Madhavi, DL; Deshpande, SS; Salunkhe, DK. Food antioxidants: Technological, Toxicological, Health Perspective, 1st ed; Marcel Dekker: New York, NY, USA, 1996; pp. 1–32. [Google Scholar]
- Valko, M; Leibfritz, D; Moncol, J; Cronin, MTD; Mazur, M; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol 2007, 39, 44–84. [Google Scholar]
- Ito, N; Hirose, M; Fukushima, S; Tsuda, H; Shirai, T; Tatematsu, M. Studies on antioxidants: Their carcinogenic and modifying effects on chemical carcinogenesis. Food Chem. Toxicol 1986, 24, 1071–1082. [Google Scholar]
- Safer, AM; Al-Nughamish, AJ. Hepatotoxicity induced by the anti-oxidant food additive butylated hydroxytoluene (BHT) in rats: An electron microscopical study. Histol. Histopathol 1999, 14, 391–406. [Google Scholar]
- Jastrzebski, Z; Medina, OJ; Moreno, LM; Gorinstein, S. In vitro studies of polyphenol compounds, total antioxidant capacity and other dietary indices in a mixture of plants (Prolipid). Int. J. Food Sci. Nutr 2007, 58, 531–541. [Google Scholar]
- Cai, YZ; Luo, Q; Sun, M; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 2004, 74, 2157–2184. [Google Scholar]
- Dragland, S; Senoo, H; Wake, K; Holte, K; Blomhoff, R. Several culinary and medicinal herbs are important sources of dietary antioxidants. J. Nutr 2003, 133, 1286–1290. [Google Scholar]
- Cai, YM; Ren, YR; Wang, L. Pharmacology and Clinical Application of Traditional Chinese Medicines, 1st ed; Huaxia Press: Beijing, China, 1999; pp. 348–387. [Google Scholar]
- Schinella, GR; Tournier, HA; Prieto, JM; Mordujovich de Buschiazzo, P; Rios, JL. Antioxidant activity of anti-inflammatory plant extracts. Life Sci 2002, 70, 1023–1033. [Google Scholar]
- Van den Berg, R; Haenen, GRMM; van den Berg, H; Bast, A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem 1999, 66, 511–517. [Google Scholar]
- Frankel, EN; Meyer, AS. The problems of using onedimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agric 2000, 80, 1925–1941. [Google Scholar]
- Liu, RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am. J. Clin. Nutr 2003, 78, 517S–520S. [Google Scholar]
- Gao, HY; Kuroyanagi, M; Wu, LJ; Kawahara, N; Yasuno, T; Nakamura, Y. Antitumor-promoting constituents from Dioscorea bulbifera L. in JB6 mouse epidermal cells. Biol. Pharm. Bull 2002, 25, 1241–1243. [Google Scholar]
- Wang, G; Liu, JS; Lin, BB; Wang, GK; Liu, JK. Two new furanoid norditerpenes from Dioscorea bulbifera. Chem. Pharm. Bull 2009, 57, 625–627. [Google Scholar]
- Ju, JH; Zhou, L; Lin, G; Liu, D; Wang, LW; Yang, JS. Studies on constituents of triterpene acids from Eriobotrya japonica and their anti-inflammatory and antitussive effects. Chin. J. Pharm 2003, 38, 752–757. [Google Scholar]
- Kim, MR; Lee, JY; Lee, HH; Aryal, DK; Kim, YG; Kim, SK; Woo, ER; Kang, KW. Antioxidative effects of quercetin-glycosides isolated from the flower buds of Tussilago farfara L. Food Chem. Toxicol 2006, 44, 1299–1307. [Google Scholar]
- Shekelle, PG; Hardy, ML; Morton, SC; Maglione, M; Mojica, WA; Suttorp, MJ; Rhodes, SL; Jungvig, L; Gagné, J. Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: a meta-analysis. J. Am. Med. Assoc 2003, 289, 1537–1545. [Google Scholar]
- Yamada, I; Goto, T; Takeuchi, S; Ohshima, S; Yoneyama, K; Shibuya, T; Kataoka, E; Segawa, D; Sato, W; Dohmen, T; Anezaki, Y; Ishii, H; Ohnishi, H. Mao (Ephedra sinica Stapf) protects against D-galactosamine and lipopolysaccharide-induced hepatic failure. Cytokine 2008, 41, 293–301. [Google Scholar]
- Petti, S; Scully, C. Polyphenols, oral health and disease: a review. J. Dent 2009, 37, 413–423. [Google Scholar]
- Shui, G; Leong, LP. Separation and determination of organic acids and phenolic compounds in fruit juices and drinks by high-performance liquid chromatography. J. Chromatogr. A 2002, 977, 89–96. [Google Scholar]
- Wong, CC; Li, HB; Cheng, KW; Chen, F. A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem 2006, 97, 705–711. [Google Scholar]
- Re, R; Pellegrini, N; Proteggente, A; Pannala, A; Yang, M; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med 1999, 26, 1231–1237. [Google Scholar]
- Li, HB; Cheng, KW; Wong, CC; Fan, KW; Chen, F; Jiang, Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 2007, 102, 771–776. [Google Scholar]
- Benzie, IFF; Strain, JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem 1996, 239, 70–76. [Google Scholar]
- Singleton, VL; Rossi, JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic 1965, 16, 144–158. [Google Scholar]
Scientific name | TEAC value (μmol Trolox/g) | FRAP value (μmol Fe2+/g) | Phenolic content (mg GAE/g) |
---|---|---|---|
Angelica dahurica Benth. et Hook | 20.79 ± 3.67 | 27.36 ± 0.49 | 2.94 ± 0.11 |
Arctium lappa L. | 74.66 ± 0.53 | 223.68 ± 8.28 | 16.94 ± 1.7 |
Ardisia japonica (Horrst) Bl. | 164.17 ± 2.39 | 170.2 ± 4.39 | 13.58 ± 0.03 |
Arisaema consanguineum Schott | 0.78 ± 0.14 | 1.05 ± 0.18 | 0.24 ± 0.02 |
Aster tataricus L. F. | 47.38 ± 1.43 | 14.77 ± 0.89 | 5.56 ± 0.21 |
Bambusa breviflora Munro | 82.46 ± 1.03 | 115.74 ± 3.91 | 9.03 ± 0.26 |
Brassica alba L. Boiss | 53.51 ± 3.3 | 64.87 ± 2.55 | 3.34 ± 0.37 |
Bupleurum chinense D. C. | 19.93 ± 0.29 | 32.05 ± 2.22 | 3.41 ± 0.21 |
Centipeda minima (L.) A. Br. Et Ascher | 16.87 ± 2.4 | 13.31 ± 0.61 | 2.34 ± 0.03 |
Changiumsmyrnioides Wolff | 2.07 ± 0.07 | 0.35 ± 0.02 | 0.50 ± 0.01 |
Chrysanthemum indicum L. | 51.91 ± 0.84 | 72.16 ± 4.88 | 11.28 ± 0.10 |
Chrysanthemum morifolium Ramat. | 80.04 ± 2.55 | 149.24 ± 2.9 | 14.79 ± 1.41 |
Cimicifuga foetida L. | 119.50 ± 1.43 | 199.08 ± 0.5 | 12.57 ± 0.17 |
Cinnamomum cassia Presl | 52.75 ± 0.55 | 35.59 ± 1.16 | 9.71 ± 0.10 |
Cynanchum stauntoni (Decne.) Schltr. | 14.24 ± 0.38 | 9.77 ± 1.06 | 1.40 ± 0.09 |
Dioscorea bulbifera L. | 708.73 ± 3.7 | 856.92 ± 3.99 | 59.43 ± 1.03 |
Elsholtziasplendens Wakaiex | 59.84 ± 3.09 | 52.55 ± 4.99 | 7.71 ± 0.03 |
Ephedra sinica Seapf | 197.69 ± 3.36 | 388.68 ± 9.58 | 27.70 ± 0.89 |
Equisetum hiema L. | 10.66 ± 1.04 | 13.79 ± 0.72 | 2.68 ± 0.05 |
Eriobotrya japonica (Thunb.) Lindl. | 326.87 ± 7.17 | 437.4 ± 7.42 | 31.47 ± 0.48 |
Fritillaria cirrhosa D. Don | 2.57 ± 0.04 | 0.29 ± 0.05 | 0.96 ± 0.07 |
Fverticillata Willd. | 9.83 ± 0.21 | 0.91 ± 0.13 | 1.07 ± 0.09 |
Ginkgo biloba L. (fruit) | 11.63 ± 0.31 | 11.67 ± 1.01 | 2.14 ± 0.01 |
Ginkgo biloba L. (leaf) | 82.89 ± 1.06 | 88.76 ± 5.01 | 11.55 ± 0.18 |
Gleditsia sinensis Lam. | 54.14 ± 2.92 | 26 ± 2.38 | 6.68 ± 0.23 |
Inula britannica L. | 96.12 ± 2.20 | 142.31 ± 5.13 | 12.83 ± 0.56 |
Laminaria japonica Aiesch | 6.86 ± 0.64 | 0.33 ± 0.06 | 0.36 ± 0.03 |
Lepidium apetalum Willd | 47.23 ± 0.73 | 34.64 ± 4.13 | 5.91 ± 0.08 |
Ligusticum sinense Oliv | 84.71 ± 0.93 | 89.84 ± 3.70 | 11.99 ± 0.05 |
Magnolialilifora Desr | 49.19 ± 4.13 | 118.53 ± 11.61 | 10.98 ± 0.31 |
Mentha haplocalyx Briq | 87.80 ± 7.80 | 175.06 ± 3.94 | 12.08 ± 0.26 |
Momordica grosvenori Swingle | 63.17 ± 0.30 | 41.28 ± 3.55 | 12.22 ± 1.27 |
Morus alba L. (bark of root) | 67.22 ± 5.07 | 21.67 ± 1.20 | 5.34 ± 0.09 |
Morus alba L. (leaf) | 74.19 ± 1.67 | 65.79 ± 4.11 | 10.94 ± 0.21 |
Notopterygiumincisum Ting | 62.94 ± 4.32 | 66.80 ± 2.03 | 10.86 ± 0.31 |
Oraxylum indicum (L.) Vent | 85.20 ± 1.16 | 45.64 ± 2.17 | 8.15 ± 0.61 |
Perilla frutescens (L.) Britt. (leaf) | 36.47 ± 1.81 | 46.8 ± 2.14 | 7.17 ± 0.05 |
Perilla frutescens (L.) Britt. (seed) | 13.71 ± 1.19 | 26.29 ± 3.01 | 1.96 ± 0.10 |
Perilla frutescens (L.) Britt. (stem) | 11.91 ± 0.67 | 25.34 ± 0.82 | 2.8 ± 0.07 |
Peucedanum praeruptorum Dunn | 4.20 ± 0.15 | 14.78 ± 1.95 | 1.6 ± 0.15 |
Physalis alkekengi L. | 64.29 ± 2.59 | 60.42 ± 4.49 | 9.12 ± 0.31 |
Pinellia ternata (Thunb.) Breit | 0.61 ± 0.05 | 0.46 ± 0.02 | 0.12 ± 0.01 |
Platycodon grandiflorus Jacq. | 6.42 ± 0.15 | 5.26 ± 0.73 | 1.15 ± 0.05 |
Prunus armeniaca L.var. ansu Maxim. | 4.18 ± 0.05 | 0.41 ± 0.04 | 0.58 ± 0.03 |
Pueraria lobata (Willd.) Ohwi (root) | 8.51 ± 0.37 | 13.87 ± 1.66 | 3.11 ± 0.09 |
Pueraria lobata (Willd.) Ohwi (flower) | 91.52 ± 2.07 | 75.55 ± 4.37 | 24.01 ± 1.76 |
Saposhnikovia divaricata Turcz. | 6.39 ± 0.81 | 14.22 ± 1.12 | 2.31 ± 0.23 |
Sargassum fusiforme Turn. | 3.89 ± 0.52 | 0.15 ± 0.02 | 0.18 ± 0.01 |
Schizonepeta ternnuifolia (Benth) Briq | 47.13 ± 1.39 | 67.97 ± 3.76 | 8.17 ± 0.03 |
Spirodela polyrrhiza (L.) Schleid. | 54.84 ± 3.21 | 89.55 ± 4.89 | 10.53 ± 0.23 |
Stemona sessilifolia (Miq.) Franch | 12.21 ± 0.61 | 22.87 ± 3.93 | 5.55 ± 0.11 |
Sterculia scaphigera Wall. | 52.26 ± 0.87 | 57.28 ± 9.81 | 5.49 ± 0.12 |
Trichosanthes Ririlowii Maxim | 11.01 ± 0.32 | 9.53 ± 0.97 | 1.66 ± 0.17 |
Tussilago farfara L. | 217.62 ± 5.35 | 455.64 ± 5.03 | 30.03 ± 0.19 |
Vitex yotundifolia L. | 37.18 ± 1.61 | 9.35 ± 1.09 | 5.66 ± 0.16 |
Xanthium sibiricum Patr. ex Widd | 31.42 ± 0.83 | 23.63 ± 2.86 | 6.6 ± 0.22 |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Song, F.-L.; Gan, R.-Y.; Zhang, Y.; Xiao, Q.; Kuang, L.; Li, H.-B. Total Phenolic Contents and Antioxidant Capacities of Selected Chinese Medicinal Plants. Int. J. Mol. Sci. 2010, 11, 2362-2372. https://doi.org/10.3390/ijms11062362
Song F-L, Gan R-Y, Zhang Y, Xiao Q, Kuang L, Li H-B. Total Phenolic Contents and Antioxidant Capacities of Selected Chinese Medicinal Plants. International Journal of Molecular Sciences. 2010; 11(6):2362-2372. https://doi.org/10.3390/ijms11062362
Chicago/Turabian StyleSong, Feng-Lin, Ren-You Gan, Yuan Zhang, Qin Xiao, Lei Kuang, and Hua-Bin Li. 2010. "Total Phenolic Contents and Antioxidant Capacities of Selected Chinese Medicinal Plants" International Journal of Molecular Sciences 11, no. 6: 2362-2372. https://doi.org/10.3390/ijms11062362