Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ERα signaling through slug regulates E-cadherin and EMT

Abstract

The ERα signaling pathway is one of the most important and most studied pathways in human breast cancer, yet numerous questions still exist such as how hormonally responsive cancers progress to a more aggressive and hormonally independent phenotype. We have noted that human breast cancers exhibit a strong direct correlation between ERα and E-cadherin expression by immunohistochemistry, suggesting that ERα signaling might regulate E-cadherin and implying that this regulation might influence epithelial–mesenchymal transition (EMT) and tumor progression. To investigate this hypothesis and the mechanisms behind it, we studied the effects of ERα signaling in ERα-transfected ERα-negative breast carcinoma cell lines, the MDA-MB-468 and the MDA-MB-231 and the effects of ERα knockdown in naturally expressing ERα-positive lines, MCF-7 and T47D. When ERα was overexpressed in the ERα-negative lines, 17β-estradiol (E2) decreased slug and increased E-cadherin. Clones maximally exhibiting these changes grew more in clumps and became less invasive in Matrigel. When ERα was knocked down in the ERα-positive lines, slug increased, E-cadherin decreased, cells became spindly and exhibited increased Matrigel invasion. ERα signaling decreased slug expression by two different mechanisms: directly, by repression of slug transcription by the formation of a corepressor complex of ligand-activated ERα, HDAC inhibitor (HDAC1), and nuclear receptor corepressor (N-CoR) that bound the slug promoter in three half-site estrogen response elements (EREs); indirectly by phosphorylation and inactivation of GSK-3β through phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt). The GSK-3β inactivation, in turn, repressed slug expression and increased E-cadherin. In human breast cancer cases, there was a strong inverse correlation between slug and ERα and E-cadherin immunoreactivity. Our findings indicate that ERα signaling through slug regulates E-cadherin and EMT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Alpaugh ML, Tomlinson JS, Kasraeian S, Barsky SH . (2002a). Cooperative role of E-cadherin and sialyl-Lewis X/A-deficient MUC1 in the passive dissemination of tumor emboli in inflammatory breast carcinoma. Oncogene 21: 3631–3643.

    Article  CAS  Google Scholar 

  • Alpaugh ML, Tomlinson JS, Ye Y, Barsky SH . (2002b). Relationship of sialyl-lewisx/a underexpression and E-cadherin overexpression in the lymphovascular embolus of inflammatory breast carcinoma. Am J Path 161: 619–628.

    Article  CAS  Google Scholar 

  • Bachelder RE, Yoon SO, Franci C, de Herreros AG, Mercurio AM . (2005). Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial–mesenchymal transition. J Cell Biol 168: 29–33.

    Article  CAS  PubMed Central  Google Scholar 

  • Barsky SH . (2003). Myoepithelial mRNA expression profiling reveals a common tumor suppressor phenotype. Exp Mol Pathol 74: 113–122.

    Article  CAS  Google Scholar 

  • Berx G, Van Roy F . (2001). The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Can Res 3: 289–293.

    Article  CAS  Google Scholar 

  • Cardona-Gomez P, Perez M, Avila J, Garcia-Segura LM, Wandosell F . (2004). Estradiol inhibits GSK3 and regulates interaction of estrogen receptors, GSK3, and beta-catenin in the hippocampus. Mol Cell Neurosci 25: 363–373.

    Article  CAS  Google Scholar 

  • Catalano A, Rodilossi S, Rippo MR, Caprari P, Procopio A . (2004). Induction of stem cell factor/c-Kit/Slug signal transduction in multidrug-resistant malignant mesothelioma cells. J Biol Chem 279: 46706–46714.

    Article  CAS  Google Scholar 

  • Come C, Magnino F, Bibeau F, De Santa Barbara P, Becker KF, Theillet C et al. (2006). Snai1 and slug play distinct roles during breast carcinoma progression. Clin Cancer Res 12: 5395–5402.

    Article  CAS  Google Scholar 

  • de Groot RP, Auwerx J, Bourouis M, Sassone-Corsi P . (1993). Negative regulation of Jun/AP-1: conserved function of glycogen synthase kinase 3 and the Drosophila kinase shaggy. Oncogene 8: 841–847.

    CAS  PubMed Central  Google Scholar 

  • Dhasarathy A, Kajita M, Wade PA . (2007). The transcription factor snai1 mediates epithelial to mesenchymal transitions by repression of estrogen receptor-α. Mol Endocrinol 21: 2907–2918.

    Article  CAS  PubMed Central  Google Scholar 

  • Fiol CJ, Williams JS, Chou CH, Wang QM, Roach PJ, Andrisani OM . (1994). A secondary phosphorylation of CREB341 at Ser129 is required for the cAMP-mediated control of gene expression. A role for glycogen synthase kinase-3 in the control of gene expression. J Biol Chem 269: 32187–32193.

    CAS  PubMed  Google Scholar 

  • Frame S, Cohen P . (2001). GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359: 1–16.

    Article  CAS  PubMed Central  Google Scholar 

  • Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, Wade PA . (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 113: 207–219.

    Article  CAS  PubMed Central  Google Scholar 

  • Grisouard J, Medunjanin S, Hermani A, Shukla A, Mayer D . (2007). Glycogen synthase kinase-3 protects estrogen receptor α from proteosomal degradation and is required for full transcriptional activity of the receptor. Mol Endocrinol 21: 2427–2439.

    Article  CAS  Google Scholar 

  • Hajra KM, Chen DY, Fearon ER . (2002). The SLUG zinc-finger protein represses E-Cadherin in breast cancer. Cancer Res 62: 1613–1618.

    CAS  PubMed  Google Scholar 

  • Hall JM, McDonnell DP . (2005). Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol Interv 5: 343–357.

    Article  Google Scholar 

  • Hayashida Y, Honda K, Idogawa M, Ino Y, Ono M, Tsuchida A et al. (2005). E-cadherin regulates the association between β-catenin and actinin-4. Cancer Res 65: 8836–8845.

    Article  CAS  Google Scholar 

  • Hiraguri S, Godfrey T, Nakamura H, Graff J, Collins C, Shayesteh L et al. (1998). Mechanisms of inactivation of E-cadherin in breast cancer cell lines. Cancer Res 58: 1972–1977.

    CAS  PubMed  Google Scholar 

  • Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR . (2000). Requirement for glycogen synthase kinase-3 in cell survival and NF-κB activation. Nature 406: 86–90.

    Article  CAS  PubMed Central  Google Scholar 

  • Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R et al. (1995). Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377: 397–404.

    Article  CAS  Google Scholar 

  • Hotz B, Arndt M, Dullat S, Bhargava S, Buhr HJ, Hotz HG . (2007). Epithelial to mesenchymal transition: expression of the regulators snai1, slug and twist in pancreatic cancer. Clin Cancer Res 13: 4769–4776.

    Article  CAS  Google Scholar 

  • Hyder SM, Stancel GM, Chiappetta C, Murthy L, Boettg ER, Tong HL et al. (1996). Uterine expression of vascular endothelial growth factor is increased by estradiol and tamoxifen. Cancer Res 56: 3954–3960.

    CAS  PubMed  Google Scholar 

  • Joshi AS, Sharangpani GM, Porter K, Keyhani S, Morrison C, Basu AS et al. (2007). Semi-automated imaging system to quantitate Her-2/neu membrane receptor immunoreactivity in human breast cancer. Cytometry Part A 71A: 273–285.

    Article  CAS  Google Scholar 

  • Kato S, Masuhiro Y, Watanabe M, Kobayashi Y, Takeyama K, Endoh H et al. (2000). Molecular mechanism of a cross-talk between oestrogen and growth factor signaling pathways. Genes Cells 5: 593–601.

    Article  CAS  Google Scholar 

  • Keeton EK, Brown M . (2005). Cell cycle progression stimulated by tamoxifen-bound estrogen receptor- and promoter-specific effects in breast cancer cells deficient in N-CoR and SMRT. Mol Endocrinol 19: 1543–1554.

    Article  CAS  PubMed Central  Google Scholar 

  • Lacroix M, Leclercq G . (2004). Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Can Res Treat 83: 249–289.

    Article  CAS  Google Scholar 

  • Lombaerts M, Van Wezel T, Philippo K, Dierssen JWF, Zimmerman RME, Oosting J et al. (2006). E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br J Cancer 94: 661–671.

    Article  CAS  PubMed Central  Google Scholar 

  • Medunjanin S, Hermani A, De Servil B, Grisouard J, Rincke G, Mayer D . (2005). Glycogen synthase kinase-3 interacts with and phosphorylates estrogen receptor and is involved in the regulation of receptor activity. J Biol Chem 280: 33006–33014.

    Article  CAS  Google Scholar 

  • Mendez P, Garcia-Segura LM . (2006). Phosphatidylinositol 3-Kinase and glycogen synthase kinase 3 regulate estrogen receptor-mediated transcription in neuronal cells. Endocrinology 147: 3027–3039.

    Article  CAS  Google Scholar 

  • Moggs JG, Murphy TC, Lim FL, Moore DJ, Stuckey R, Antrobus K et al. (2005). Anti-proliferative effect of estrogen in breast cancer cells that re-express ERα is mediated by aberrant regulation of cell cycle genes. J Mol Endocrinol 34: 535–551.

    Article  CAS  Google Scholar 

  • Moreno-Bueno G, Cubillo E, Sarrio D, Peinado H, Rodriguez-Pinilla SM, Villa S et al. (2006). Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for snai1, slug, and E47 factors in epithelial-mesenchymal transition. Cancer Res 66: 9543–9556.

    Article  CAS  Google Scholar 

  • Mueller MD, Vigne JL, Minchenko A, Lebovic DI, Leitman DC, Taylor RN . (2000). Regulation of vascular endothelial growth factor (VEGF) gene transcription by estrogen receptors α and β. Proc Natl Acad Sci USA 97: 10972–10977.

    Article  CAS  Google Scholar 

  • Nam JS, Kang MJ, Suchar AM, Shimamura T, Kohn EA, Michalowska AM et al. (2006). Chemokine (C-C motif) ligand 2 mediates the prometastatic effect of dysadherin in human breast cancer cells. Cancer Res 66: 7176–7184.

    Article  CAS  PubMed Central  Google Scholar 

  • Natsugoe S, Uchikado Y, Okumura H, Setoyama T, Matsumoto M, Setoyama T et al. (2007). Snai1 plays a key role in E-cadherin preserved esophageal squamous cell carcinoma. Oncol Rep 17: 517–523.

    CAS  PubMed  Google Scholar 

  • Nilsson S, Makea S, Treuter E, Tujague M, Thomsen J, Andersson G et al. (2001). Mechanisms of estrogen action. Physiol Rev 81: 1535–1565.

    Article  CAS  Google Scholar 

  • Oesterreich S, Deng W, Jiang S, Cui X, Ivanova M, Schiff R et al. (2003). Estrogen-mediated down-regulation of E-cadherin in breast cancer cells. Cancer Res 63: 5203–5208.

    CAS  PubMed  Google Scholar 

  • Park KJ, Krishnan V, O'Malley BM, Yamamoto Y, Gaynor RB . (2005). Formation of an IKKalpha-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol Cell 18: 71–82.

    Article  CAS  Google Scholar 

  • Perrais M, Chen X, Perez-Moreno M, Gumbiner BM . (2007). E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions. Mol Biol Cell 18: 2013–2025.

    Article  CAS  PubMed Central  Google Scholar 

  • Poser I, Dominguez D, de Herreros AG, Varnai A, Buettner R, Bosserhoff AK . (2001). Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor snai1. J Biol Chem 276: 24661–24666.

    Article  CAS  Google Scholar 

  • Qian X, Karpova T, Sheppard AM, McNally J, Lowy DR . (2004). E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J 23: 1739–1748.

    Article  CAS  PubMed Central  Google Scholar 

  • Roll JD, Rivenback AG, Jones WD, Coleman WB . (2008). DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines. Mol Cancer 7: 15.

    Article  PubMed Central  Google Scholar 

  • Sasaki C, Lin H, Morin PJ, Longo DL . (2000). Truncation of the extracellular region abrogates cell contact but retains the growth-suppressive activity of E-cadherin. Cancer Res 60: 7057–7065.

    CAS  Google Scholar 

  • Sharangpani GM, Joshi AS, Porter K, Deshpande AS, Keyhani S, Nail GA et al. (2007). Semi-automated imaging system to quantitate estrogen and progesterone receptor immunoreactivity in human breast cancer. J Microscopy 226: 244–255.

    Article  CAS  Google Scholar 

  • Tomlinson JS, Alpaugh ML, Barsky SH . (2001). An intact overexpressed E-cadherin/α,β-catenin axis characterizes the lymphovascular emboli of inflammatory breast carcinoma. Cancer Res 61: 5231–5241.

    CAS  PubMed  Google Scholar 

  • Tora L, White J, Brou C, Tasset D, Webster N, Scheer E et al. (1989). The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 59: 477–487.

    Article  CAS  Google Scholar 

  • Turenne GA, Price BD . (2001). Glycogen synthase kinase3 beta phosphorylates serine 33 of p53 and activates p53's transcriptional activity. BMC Cell Biol 2: 12–20.

    Article  CAS  PubMed Central  Google Scholar 

  • Uchikado Y, Natsugoe S, Okumura H, Setoyama T, Matsumoto M, Ishigami S et al. (2005). Slug expression in the E-cadherin preserved tumors is related to prognosis in patients with esophageal squamous cell carcinoma. Clin Cancer Res 11: 1174–1180.

    CAS  PubMed  Google Scholar 

  • Voss TC, Demarco IA, Booker CF, Day RN . (2005). Corepressor subnuclear organization is regulated by estrogen receptor via a mechanism that requires the DNA-binding domain. Mol Cell Endocrinol 231: 33–47.

    Article  CAS  Google Scholar 

  • Watcharasit P, Bijur GN, Son L, Zhu J, Chen X, Jope RS . (2003). Glycogen synthase kinase-3 (GSK3β) binds to and promotes the actions of p53. J Biol Chem 278: 48872–48879.

    Article  CAS  PubMed Central  Google Scholar 

  • Wong AST, Gumbiner BM . (2003). Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J Cell Biol 161: 1191–1203.

    Article  CAS  PubMed Central  Google Scholar 

  • Yang JY, Zong CS, Xia W, Wei Y, Ali-Seyed M, Li Z et al. (2006). MDM2 promotes cell motility and invasiveness by regulating E-cadherin degradation. Mol Cell Biol 26: 7269–7282.

    Article  CAS  PubMed Central  Google Scholar 

  • Yang S, Du J, Wang Z, Yuan W, Qiao Y, Zhang M et al. (2007). BMP-6 promotes E-cadherin expression through repressing δEF1 in breast cancer cells. BMC Cancer 7: 211.

    Article  PubMed Central  Google Scholar 

  • Ye Y, Xiao Y, Wang W, Yearsley K, Gao JX, Barsky SH . (2008). ERα suppresses slug expression directly by transcriptional repression. Biochem J 416: 179–187.

    Article  CAS  PubMed Central  Google Scholar 

  • Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. (2004). Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol 6: 931–940.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Department of Defense Breast Cancer Research Program Grant W81XWH-06-1-0631, the Ohio State Strategic Initiative Grant Program and The Donald A Senhauser Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S H Barsky.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, Y., Xiao, Y., Wang, W. et al. ERα signaling through slug regulates E-cadherin and EMT. Oncogene 29, 1451–1462 (2010). https://doi.org/10.1038/onc.2009.433

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.433

Keywords

This article is cited by

Search

Quick links