Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

ModelFinder: fast model selection for accurate phylogenetic estimates

Abstract

Model-based molecular phylogenetics plays an important role in comparisons of genomic data, and model selection is a key step in all such analyses. We present ModelFinder, a fast model-selection method that greatly improves the accuracy of phylogenetic estimates by incorporating a model of rate heterogeneity across sites not previously considered in this context and by allowing concurrent searches of model space and tree space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ModelFinder obtains accurate phylogenetic estimates.
Figure 2: Advantages provided by ModelFinder.

Similar content being viewed by others

References

  1. Eisen, J.A. Genome Res. 8, 163–167 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Hardy, M.P., Owczarek, C.M., Jermiin, L.S., Ejdebäck, M. & Hertzog, P.J. Genomics 84, 331–345 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. dos Reis, M. et al. Proc. R. Soc. B 279, 3491–3500 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Prum, R.O. et al. Nature 526, 569–573 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Ruhfel, B.R., Gitzendanner, M.A., Soltis, P.S., Soltis, D.E. & Burleigh, J.G. BMC Evol. Biol. 14, 23 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Salichos, L. & Rokas, A. Nature 497, 327–331 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Andersen, K.G. et al. Cell 162, 738–750 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tay, W.T. et al. Sci. Rep. 7, 45302 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. Nat. Methods 9, 772 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. Bioinformatics 27, 1164–1165 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Lanfear, R., Calcott, B., Ho, S.Y.W. & Guindon, S. Mol. Biol. Evol. 29, 1695–1701 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Yang, Z. J. Mol. Evol. 39, 306–314 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Yang, Z. Genetics 139, 993–1005 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. Mol. Biol. Evol. 32, 268–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Dempster, A.P., Laird, N.M. & Rubin, D.B. J. R. Stat. Soc. Series B Stat. Methodol. 39, 1–38 (1977).

    Google Scholar 

  16. Fletcher, W. & Yang, Z. Mol. Biol. Evol. 26, 1879–1888 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Le, S.Q. & Gascuel, O. Mol. Biol. Evol. 25, 1307–1320 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Robinson, D.F. & Foulds, L.R. Math. Biosci. 53, 131–147 (1981).

    Article  Google Scholar 

  19. Wu, D. et al. Nature 462, 1056–1060 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kass, R.E. & Raftery, A.E. J. Am. Stat. Assoc. 90, 773–795 (1995).

    Article  Google Scholar 

  21. Sanderson, M.J., Donoghue, M.J., Piel, W. & Eriksson, T. Am. J. Bot. 81, 183 (1994).

    Article  Google Scholar 

  22. Jayaswal, V., Wong, T.K.F., Robinson, J., Poladian, L. & Jermiin, L.S. Syst. Biol. 63, 726–742 (2014).

    Article  PubMed  Google Scholar 

  23. Posada, D. & Crandall, K.A. Bioinformatics 14, 817–818 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Chiotis, M., Jermiin, L.S. & Crozier, R.H. Mol. Phylogenet. Evol. 17, 108–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Abascal, F., Zardoya, R. & Posada, D. Bioinformatics 21, 2104–2105 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Keane, T.M., Creevey, C.J., Pentony, M.M., Naughton, T.J. & Mclnerney, J.O. BMC Evol. Biol. 6, 29 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Posada, D. Nucleic Acids Res. 34, W700–W703 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Posada, D. Mol. Biol. Evol. 25, 1253–1256 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Santorum, J.M., Darriba, D., Taboada, G.L. & Posada, D. Bioinformatics 30, 1310–1311 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Whelan, S., Allen, J.E., Blackburne, B.P. & Talavera, D. Syst. Biol. 64, 42–55 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Soubrier, J. et al. Mol. Biol. Evol. 29, 3345–3358 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Fletcher, R. Practical Methods of Optimization 2nd edn (John Wiley & Sons, 2000).

  33. Guindon, S. et al. Syst. Biol. 59, 307–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Guindon, S. Syst. Biol. 62, 22–34 (2013).

    Article  PubMed  Google Scholar 

  35. Bouckaert, R. et al. PLoS Comp. Biol. 10, e1003537 (2014).

    Article  Google Scholar 

  36. Brent, R.P. Algorithms for Minimization without Derivatives (Prentice Hall, 1973).

Download references

Acknowledgements

We thank D.Y. Wu, J.A. Eisen, P. Donoghue and A. Rokas for access to their data; E. Susko for discussions about the EM algorithm; and V. Jayaswal for constructive feedback. B.Q.M. and A.v.H. were supported by the Austrian Science Fund (FWF I-2805-B29).

Author information

Authors and Affiliations

Authors

Contributions

S.K., T.K.F.W. and L.S.J. conceived the method and executed a pilot study to assess the method's likely impact on model selection. B.Q.M. and T.K.F.W. implemented the method in IQ-TREE with contributions from S.K., L.S.J. and A.v.H. S.K., T.K.F.W., L.S.J. and B.Q.M. assessed the performance and accuracy of the method. S.K., T.K.F.W. and L.S.J. carried out the analyses of simulated and real data. L.S.J., S.K., T.K.F.W., B.Q.M. and A.v.H. wrote the paper.

Corresponding author

Correspondence to Lars S Jermiin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 2 (PDF 298 kb)

Supplementary Table 1 (XLSX 54 kb)

Supplementary Software

IQ-TREE-1.4.2.tar.gz (ZIP 4685 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalyaanamoorthy, S., Minh, B., Wong, T. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14, 587–589 (2017). https://doi.org/10.1038/nmeth.4285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.4285

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing