Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Regulation of cap-dependent translation by eIF4E inhibitory proteins

Abstract

Eukaryotic messenger RNAs contain a modified guanosine, termed a cap, at their 5′ ends. Translation of mRNAs requires the binding of an initiation factor, eIF4E, to the cap structure. Here, we describe a family of proteins that through a shared sequence regulate cap-dependent translation. The biological importance of this translational regulation is immense, and affects such processes as cell growth, development, oncogenic transformation and perhaps even axon pathfinding and memory consolidation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Translational control by eIF4E inhibitory proteins.
Figure 2: Regulation of eIF4E inhibitory proteins.

Similar content being viewed by others

References

  1. Dever, T. Gene-specific regulation by general translation factors. Cell 198, 545–556 (2002)

    Article  Google Scholar 

  2. Mader, S., Lee, H., Pause, A. & Sonenberg, N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4γ and the translational repressors 4E-binding proteins. Mol. Cell. Biol. 15, 4990–4997 (1995)

    Article  CAS  Google Scholar 

  3. Marcotrigiano, J., Gingras, A. C., Sonenberg, N. & Burley, S. K. Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89, 951–956 (1997)

    Article  CAS  Google Scholar 

  4. Matsuo, H. et al. Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nature Struct. Biol. 4, 717–724 (1997)

    Article  CAS  Google Scholar 

  5. Haghighat, A., Mader, S., Pause, A. & Sonenberg, N. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J. 14, 5701–5709 (1995)

    Article  CAS  Google Scholar 

  6. Gingras, A. C., Raught, B. & Sonenberg, N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913–963 (1999)

    Article  CAS  Google Scholar 

  7. Stebbins-Boaz, B., Cao, Q., de Moor, C. H., Mendez, R. & Richter, J. D. Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol. Cell 4, 1017–1027 (1999)

    Article  CAS  Google Scholar 

  8. Cao, Q. & Richter, J. D. Dissolution of the maskin-eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation. EMBO J. 21, 3852–3862 (2002)

    Article  CAS  Google Scholar 

  9. Niessing, D., Blanke, S. & Jackle, H. Bicoid associates with the 5′-cap-bound complex of caudal mRNA and represses translation. Genes Dev. 16, 2576–2582 (2002)

    Article  CAS  Google Scholar 

  10. Nakamura, A., Sato, K. & Hanyu-Nakamura, K. Drosophila cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis. Dev. Cell 6, 69–78 (2004)

    Article  CAS  Google Scholar 

  11. Wilhelm, J. E., Hilton, M., Amos, Q. & Henzel, W. J. Cup is an eIF4E binding protein required for both the translational repression of oskar and the recruitment of Barentsz. J. Cell Biol. 163, 1197–1204 (2003)

    Article  CAS  Google Scholar 

  12. Nelson, M. R., Leidal, A. M. & Smibert, C. A. Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression. EMBO J. 23, 150–159 (2004)

    Article  CAS  Google Scholar 

  13. Lazaris-Karatzas, A., Montine, K. S. & Sonenberg, N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345, 544–547 (1990)

    Article  ADS  CAS  Google Scholar 

  14. Avdulov, S. et al. Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 5, 553–563 (2004)

    Article  CAS  Google Scholar 

  15. Ruggero, D. et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nature Med. 10, 484–486 (2004)

    Article  CAS  Google Scholar 

  16. Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–337 (2004)

    Article  ADS  CAS  Google Scholar 

  17. Ruggero, D. & Pandolfi, P. P. Does the ribosome translate cancer? Nature Rev. Cancer 3, 179–192 (2003)

    Article  CAS  Google Scholar 

  18. Rousseau, D., Gingras, A. C., Pause, A. & Sonenberg, N. The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene 13, 2415–2420 (1996)

    CAS  PubMed  Google Scholar 

  19. Sawyers, C. L. Will mTOR inhibitors make it as cancer drugs? Cancer Cell 4, 343–384 (2003)

    Article  CAS  Google Scholar 

  20. Duncan, R., Milburn, S. C. & Hershey, J. W. Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggest a role in translational control. Heat shock effects on eIF-4F. J. Biol. Chem. 262, 380–383 (1987)

    CAS  PubMed  Google Scholar 

  21. Rau, M., Ohlmann, T., Morley, S. J. & Pain, V. M. A reevaluation of the cap-binding protein, eIF4E, as a rate-limiting factor for initiation of translation in reticulocyte lysate. J. Biol. Chem. 271, 8983–8990 (1996)

    Article  CAS  Google Scholar 

  22. Sonenberg, N. Translation factors are effectors of cell growth and tumorigenesis. Curr. Opin. Cell Biol. 5, 955–960 (1993)

    Article  CAS  Google Scholar 

  23. Koromilas, A. E., Lazaris-Karatzas, A. & Sonenberg, N. mRNAs containing extensive secondary structure in their 5′ non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J. 11, 4153–4158 (1992)

    Article  CAS  Google Scholar 

  24. Graff, J. R. & Zimmer, S. G. Translational control and metastatic progression: enhanced activity of the mRNA cap-binding protein eIF-4E selectively enhances translation of metastasis-related mRNAs. Clin. Exp. Metastasis 20, 265–273 (2003)

    Article  CAS  Google Scholar 

  25. Martin, K. C. & Kosik, K. S. Synaptic tagging–who's it? Nature Rev. Neurosci. 3, 813–820 (2002)

    Article  CAS  Google Scholar 

  26. Steward, O. & Schuman, E. M. Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 24, 299–325 (2001)

    Article  CAS  Google Scholar 

  27. Richter, J. D. & Lorenz, L. J. Selective translation of mRNAs at synapses. Curr. Opin. Neurobiol. 12, 300–304 (2002)

    Article  CAS  Google Scholar 

  28. Cassadio, A. et al. A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell 99, 221–237 (1999)

    Article  Google Scholar 

  29. Kelleher, R. J., Govindarajan, A., Jung, H., Kang, H. & Tonegawa, S. Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116, 467–479 (2004)

    Article  CAS  Google Scholar 

  30. Tang, S. J. et al. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc. Natl Acad. Sci. USA 99, 467–472 (2002)

    Article  ADS  CAS  Google Scholar 

  31. Alarcon, J. M. et al. Selective modulation of some forms of Schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learn. Mem. 11, 318–327 (2004)

    Article  Google Scholar 

  32. Wu, L. et al. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of α-CaMKII mRNA at synapses. Neuron 21, 1129–1139 (1998)

    Article  CAS  Google Scholar 

  33. Huang, Y. S., Jung, M. Y., Sarkissian, M. & Richter, J. D. N-methyl-D-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and αCaMKII mRNA polyadenylation at synapses. EMBO J. 21, 2139–2148 (2002)

    Article  CAS  Google Scholar 

  34. Campbell, D. S. & Holt, C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026 (2001)

    Article  CAS  Google Scholar 

  35. Pyronnet, S., Dostie, J. & Sonenberg, N. Suppression of cap-dependent translation in mitosis. Genes Dev. 15, 2083–2093 (2001)

    Article  CAS  Google Scholar 

  36. Heesom, K. J., Gampel, A., Mellor, H. & Denton, R. M. Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein-1 (4E-BP1). Curr. Biol. 11, 1374–1379 (2001)

    Article  CAS  Google Scholar 

  37. Tsukiyama-Kohara, K. et al. Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nature Med. 7, 1128–1132 (2001)

    Article  CAS  Google Scholar 

  38. Topisirovic, I. et al. The proline-rich homeodomain protein, PRH, is a tissue-specific inhibitor of eIF4E-dependent cyclin D1 mRNA transport and growth. EMBO J. 22, 689–703 (2003)

    Article  CAS  Google Scholar 

  39. Nedelec, S. et al. Emx2 homeodomain transcription factor interacts with eukaryotic translation initiation factor 4E (eIF4E) in the axons of olfactory sensory neurons. Proc. Natl Acad. Sci. USA 101, 10815–10820 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of N.S. was supported by grants from the Canadian Institute of Health Research (CIHR), The National Cancer Institute of Canada and The Howard Hughes Medical Institute (HHMI) International Scholar Program. N.S. is a CIHR Distinguished Scientist and a HHMI International Scholar. Work in the laboratory of J.D.R. was supported by grants from the National Institutes of Health and the G. Harold and Leila Y. Mathers Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel D. Richter.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, J., Sonenberg, N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433, 477–480 (2005). https://doi.org/10.1038/nature03205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing