Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase

Abstract

Autosomal recessive juvenile parkinsonism (AR–JP), one of the most common familial forms of Parkinson disease, is characterized by selective dopaminergic neural cell death and the absence of the Lewy body, a cytoplasmic inclusion body consisting of aggregates of abnormally accumulated proteins1. We previously cloned PARK2, mutations of which cause AR–JP (ref. 2), but the function of the gene product, parkin, remains unknown. We report here that parkin is involved in protein degradation as a ubiquitin-protein ligase collaborating with the ubiquitin-conjugating enzyme UbcH7, and that mutant parkins from AR–JP patients show loss of the ubiquitin-protein ligase activity. Our findings indicate that accumulation of proteins that have yet to be identified causes a selective neural cell death without formation of Lewy bodies. Our findings should enhance the exploration of the molecular mechanisms of neurodegeneration in Parkinson disease as well as in other neurodegenerative diseases that are characterized by involvement of abnormal protein ubiquitination, including Alzheimer disease, other tauopathies, CAG triplet repeat disorders and amyotrophic lateral sclerosis3,4,5,6,7,8,9,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Association of parkin with UbcH7 in human embryonic kidney 293 cells.
Figure 2: Domain analysis of parkin interacting with UbcH7.
Figure 3: Association of ubiquitinated cellular proteins with parkin after treatment with MG132 in human dopaminergic neuroblastoma SH-SY5Y cells.
Figure 4: Domain analysis of parkin required for the binding of ubiquitinated proteins.
Figure 5: Parkin exhibits ubiquitination activity in vitro.
Figure 6: Model of the parkin-directed ubiquitination pathway.

Similar content being viewed by others

References

  1. Mizuno, Y., Hattori, N. & Matsumine, H. Neurochemical and neurogenetic correlates of Parkinson's disease. J. Neurochem. 71, 893–902 (1998).

    Article  CAS  Google Scholar 

  2. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  Google Scholar 

  3. Mayer, R.J., Landon, M. & Lowe, J. Ubiquitin and the molecular pathology of human disease. in Ubiquitin and the Biology of the Cell. (eds Peters, J.-M., Harris, J.R. & Finley, D.) 429–462 (Plenum, New York, 1998).

    Chapter  Google Scholar 

  4. Alves-Rodrigues, A., Gregori, L. & Figueiredo-Pereira, M.E. Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci. 21, 516–520 (1998).

    Article  CAS  Google Scholar 

  5. Floyd, J.A. & Hamilton, B.A. Intranuclear inclusions and the ubiquitin-proteasome pathway: digestion of a red herring? Neuron 24, 765–766 (1999).

    Article  CAS  Google Scholar 

  6. Pallares-Trujillo, J., Lopez-Soriano, F.J. & Argiles, J.M. The involvement of the ubiquitin system in Alzheimer's disease. Int. J. Mol. Med. 2, 3–15 (1998).

    CAS  PubMed  Google Scholar 

  7. DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article  CAS  Google Scholar 

  8. Cummings, C.J. et al. Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 24, 879–892 (1999).

    Article  CAS  Google Scholar 

  9. Leigh, P.N. et al. Ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificity. Brain 114, 775–788 (1991).

    Article  Google Scholar 

  10. Kuzuhara, S., Mori, H., Izumiyama, N., Yoshimura, M. & Ihara, Y. Lewy bodies are ubiquitinated. A light and electron microscopic immunocytochemical study. Acta. Neuropathol. (Berl) 75, 345–353 (1988).

    Article  CAS  Google Scholar 

  11. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  12. Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439 (1996).

    Article  CAS  Google Scholar 

  13. Coux, O., Tanaka, K. & Goldberg, A.L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801–847 (1996).

    Article  CAS  Google Scholar 

  14. Leroy, E. et al. The ubiquitin pathway in Parkinson's disease. Nature 395, 451–452 (1998).

    Article  CAS  Google Scholar 

  15. Polymeropoulos, M.H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    Article  CAS  Google Scholar 

  16. Kruger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nature Genet. 18, 106–108 (1998).

    Article  CAS  Google Scholar 

  17. Larsen, C.N., Krantz, B.A. & Wilkinson, K.D. Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry 37, 3358–3368 (1998).

    Article  CAS  Google Scholar 

  18. Spillantini, M.G. et al. α-synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  Google Scholar 

  19. Bennett, M.C. et al. Degradation of α-synuclein by proteasome. J. Biol. Chem. 274, 33855–33858 (1999).

    Article  CAS  Google Scholar 

  20. Morett, E. & Bork, P. A novel transactivation domain in parkin. Trends Biochem. Sci. 24, 229–231 (1999).

    Article  CAS  Google Scholar 

  21. Joazeiro, C.A.P. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309–312 (1999).

    Article  CAS  Google Scholar 

  22. Xie, Y. & Varshavsky, A. The E2-E3 interaction in the N-end rule pathway: the RING-H2 finger of E3 is required for the synthesis of multiubiquitin chain. EMBO J. 18, 6832–6844 (1999).

    Article  CAS  Google Scholar 

  23. Harper, J.W. & Elledge, S.J. Skipping into the E2F1-destruction pathway. Nature Cell Biol. 1, E5–E7 (1999).

    Article  CAS  Google Scholar 

  24. Deshaies, R.J. SCF and Cullin/RING-H2-based ubiquitin-ligases. Annu. Rev. Cell Dev. Biol. 15, 435–467 (1999).

    Article  CAS  Google Scholar 

  25. Lorick, K.L. et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl Acad. Sci. USA 96, 11364–11369 (1999).

    Article  CAS  Google Scholar 

  26. Moynihan, T.P. et al. The ubiquitin-conjugating enzymes UbcH7 and UbcH8 interact with RING finger/IBR motif-containing domains of HHARI and H7-AP1. J. Biol. Chem. 274, 30963–30968 (1999).

    Article  CAS  Google Scholar 

  27. Martinez-Noel, G., Niedenthal, R., Tamura, T. & Harbers, K. A family of structurally related RING finger proteins interacts specifically with the ubiquitin-conjugating enzyme UbcM4. FEBS Lett. 454, 257–261 (1999).

    Article  CAS  Google Scholar 

  28. Hattori, N. et al. Point mutations (Thr240Arg and Gln311Stop) in the parkin gene. Biochem. Biophys. Res. Commun. 249, 754–758 (1998).

    Article  CAS  Google Scholar 

  29. Rock, K.L. et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771 (1994).

    Article  CAS  Google Scholar 

  30. Suzuki, H. et al. IκBα ubiquitination is catalyzed by an SCF-like complex containing Skp1, cullin-1, and two F-box/WD40-repeat proteins, βTrCP1 and βTrCP2. Biochem. Biophys. Res. Commun. 256, 127–132 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Melamed for the DNA sample with a mutation in the Ubl domain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimura, H., Hattori, N., Kubo, Si. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25, 302–305 (2000). https://doi.org/10.1038/77060

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77060

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing